1
|
Rajapantulu A, Bandyopadhyaya R. Role of Hydrazine and Size-Tuning Parameter in Gold Nanoparticle Synthesis by Water-in-Oil Microemulsion: Experiment and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8049-8059. [PMID: 40105465 DOI: 10.1021/acs.langmuir.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
By tuning the drop size, self-assembled microemulsion drops are used to control the size of nanoparticles synthesized in it. However, nanoparticle size control is challenging, specifically when particles outgrow the initial drop diameter. This necessitates the search for a robust operating parameter to control the size of the nanoparticles in the microemulsion route. In this pursuit, gold nanoparticle (GNP) size is controlled here, via the molar ratio (P) of concentrations of reducing agent (hydrazine) to precursor (aurochloric acid). A kinetic Monte Carlo (kMC) simulation scheme was devised to investigate the underlying mechanism behind decreasing particle diameter on increasing P. Binary pairs of GNPs seen to be partially fused from TEM images confirmed the involvement of particle-particle coagulation as a key step. Coagulation was regulated in the presence of hydrazine, the latter stabilizing GNPs by chemisorbing on its surface. Addition of NaCl caused the Cl- ion to compress the diffuse double layer around hydrazine and form agglomerated GNPs. Finally, we found that at a fixed value of P = 12, even a 4-fold increase in precursor concentration does not affect the final diameter of GNPs, signifying P as a very important robust parameter. Therefore, the current proposed single parameter P reduces the experimental parametric space by eliminating the need to track individual concentrations of all reagents. It can be used to tune or predict the nanoparticle size even in the regime where the final particle diameter is bigger than the initial drop diameter.
Collapse
Affiliation(s)
- Anil Rajapantulu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Bellomi S, Cano-Blanco DC, Barlocco I, Delgado JJ, Chen X, Prati L, Ferri D, Dimitratos N, Roldan A, Villa A. Probing the Metal/Oxide Interface of IrCoCeO x in N 2H 4·H 2O Decomposition: An Experimental and Computational Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54897-54906. [PMID: 39344045 DOI: 10.1021/acsami.4c12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the structure of a functional catalyst is crucial to disclosing the complexity of heterogeneous processes and improving their efficiency. Herein, coprecipitated cobalt-ceria (CoCeOx) oxides doped with Ir (IrCoCeOx) were synthesized and used to assess the performances of metal/oxide interfaces in the N2H4·H2O decomposition performed in aqueous NaOH. Kinetic experiments in batch showed that CoO is the active phase of CoCeOx and that the copresence of Ir and Co (IrCoCeOx) enhanced H2 productivity. A comprehensive characterization (X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy) combined with robust computational modeling based on the density functional theory was employed to attribute the IrCoCeOx performance enhancement to the Ir/CoO metal/oxide interface, the active site of the reaction. On these sites, the improved H2 productivity in the presence of aqueous NaOH was studied operando through modulated excitation-attenuated total reflectance infrared coupled with phase sensitive detection. The formation of surface Co-hydroxyl and -imido groups at the Ir/CoO interface induced the preferential breakage of the N-H bond of N2H4·H2O, favoring the production of H2.
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Daniel C Cano-Blanco
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
| | - Laura Prati
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Davide Ferri
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40126 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
3
|
Bellomi S, Barlocco I, Tumiati S, Fumagalli P, Dimitratos N, Roldan A, Villa A. Effects of oxygen functionalities on hydrous hydrazine decomposition over carbonaceous materials. Dalton Trans 2023; 52:15871-15877. [PMID: 37830287 DOI: 10.1039/d3dt02310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Metal-free heterogeneous catalysis is promising in the context of H2 generation. Therefore, establishing structure-activity relationships is a crucial issue to improve the development of more efficient catalysts. Herein, to evaluate the reactivity of the oxygen functionalities in carbonaceous materials, commercial functionalized pyrolytically stripped carbon nanofibers (CNFs) were used as catalysts in the liquid-phase hydrous hydrazine decomposition process and its activity was compared to that of a pristine CNF material. Different oxygenated groups were inserted by treating CNFs with hydrogen peroxide for 1 h (O1-H2O2) and HNO3 for 1 h (O1-HNO3) and 6 h (O6-HNO3). An increase in activity was observed as a function of the oxidizing agent strength (HNO3 > H2O2) and the functionalization time (6 h > 1 h). A thorough characterization of the catalysts demonstrated that the activity could be directly correlated with the oxygen content (O6-HNO3 > O1-HNO3 > O1-H2O2 > CNFs) and pointed out the active sites for the reaction at carbon-oxygen double bond groups (CO and COOH). Systematic DFT calculations supported rationalization of the experimental kinetic trends with respect to each oxygen group (CO, C-O-C, C-OH and COOH).
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy.
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy.
| | - Simone Tumiati
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Patrizia Fumagalli
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40126, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy.
| |
Collapse
|
4
|
Bellomi S, Barlocco I, Chen X, Delgado JJ, Arrigo R, Dimitratos N, Roldan A, Villa A. Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition. Phys Chem Chem Phys 2023; 25:1081-1095. [PMID: 36520142 DOI: 10.1039/d2cp04387d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Stabilizing metal nanoparticles is vital for large scale implementations of supported metal catalysts, particularly for a sustainable transition to clean energy, e.g., H2 production. In this work, iridium sub-nanometric particles were deposited on commercial graphite and on graphitic carbon nitride by a wet impregnation method to investigate the metal-support interaction during the hydrous hydrazine decomposition reaction. To establish a structure-activity relationship, samples were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The catalytic performance of the synthesized materials was evaluated under mild reaction conditions, i.e. 323 K and ambient pressure. The results showed that graphitic carbon nitride (GCN) enhances the stability of Ir nanoparticles compared to graphite, while maintaining remarkable activity and selectivity. Simulation techniques including Genetic Algorithm geometry screening and electronic structure analyses were employed to provide a valuable atomic level understanding of the metal-support interactions. N anchoring sites of GCN were found to minimise the thermodynamic driving force of coalescence, thus improving the catalyst stability, as well as to lead charge redistributions in the cluster improving the resistance to poisoning by decomposition intermediates.
Collapse
Affiliation(s)
- Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| | - Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) E-11510, Spain
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) E-11510, Spain
| | - Rosa Arrigo
- School of Science, Engineering and Environment, University of Salford, M5 4WT, Manchester, UK
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40126, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| |
Collapse
|
5
|
DFT study on decomposition of hydrazine nitrate on Ir(1 0 0) surface. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Matyshak VA, Silchenkova ON. Catalytic Decomposition of Hydrazine and Hydrazine Derivatives to Produce Hydrogen-Containing Gas Mixtures: A Review. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Khan S, Shah SS, Ahmad A, Yurtcan AB, Jabeen E, Alshgari RA, Janjua NK. Ruthenium and palladium oxide promoted zinc oxide nanoparticles: Efficient electrocatalysts for hydrazine oxidation reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Cena N, Peloquin AJ, Aristov MM, Carroll XB, Iacono ST, Boatz JA, Olmstead MM, Balch AL, Ghiassi KB. Variable hydrazine coordination modes from reactions with dichlorotris(triphenylphosphine)ruthenium(II). Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Barlocco I, Bellomi S, Tumiati S, Fumagalli P, Dimitratos N, Roldan A, Villa A. Selective decomposition of hydrazine over metal free carbonaceous materials. Phys Chem Chem Phys 2022; 24:3017-3029. [PMID: 35037926 DOI: 10.1039/d1cp05179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a combined experimental and computational investigation unravelling the hydrazine hydrate decomposition reaction on metal-free catalysts. The study focuses on commercial graphite and two different carbon nanofibers, pyrolytically stripped (CNF-PS) and high heat-treated (CNF-HHT), respectively, treated at 700 and 3000 °C to increase their intrinsic defects. Raman spectroscopy demonstrated a correlation between the initial catalytic activity and the intrinsic defectiveness of carbonaceous materials. CNF-PS with higher defectivity (ID/IG = 1.54) was found to be the best performing metal-free catalyst, showing a hydrazine conversion of 94% after 6 hours of reaction and a selectivity to H2 of 89%. In addition, to unveil the role of NaOH, CNF-PS was also tested in the absence of alkaline solution, showing a decrease in the reaction rate and selectivity to H2. Density functional theory (DFT) demonstrated that the single vacancies (SV) present on the graphitic layer are the only active sites promoting hydrazine decomposition, whereas other defects such as double vacancy (DV) and Stone-Wales (SW) defects are unable to adsorb hydrazine fragments. Two symmetrical and one asymmetrical dehydrogenation pathways were found, in addition to an incomplete decomposition pathway forming N2 and NH3. On the most stable hydrogen production pathway, the effect of the alkaline medium was elucidated through calculations concerning the diffusion and recombination of atomic hydrogen. Indeed, the presence of NaOH helps the extraction of H species without additional energetic barriers, as opposed to the calculations performed in a polarizable continuum medium. Considering the initial hydrazine dissociative adsorption, the first step of the dehydrogenation pathway is more favourable than the scission of the N-N bond, which leads to NH3 as the product. This first reaction step is crucial to define the reaction mechanisms and the computational results are in agreement with the experimental ones. Moreover, comparing two different hydrogen production pathways (with and without diffusion and recombination), we confirmed that the presence of sodium hydroxide in the experimental reaction environment can modify the energy gap between the two pathways, leading to an increased reaction rate and selectivity to H2.
Collapse
Affiliation(s)
- Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano I-20133, Italy.
| | - Silvio Bellomi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano I-20133, Italy.
| | - Simone Tumiati
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Patrizia Fumagalli
- Dipartimento di Scienze della Terra Ardito Desio, Università degli Studi di Milano, via Mangiagalli 34, Milano I-20133, Italy
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, Milano I-20133, Italy.
| |
Collapse
|
10
|
Chambreau SD, Popolan-Vaida DM, Kostko O, Lee JK, Zhou Z, Brown TA, Jones P, Shao K, Zhang J, Vaghjiani GL, Zare RN, Leone SR. Thermal and Catalytic Decomposition of 2-Hydroxyethylhydrazine and 2-Hydroxyethylhydrazinium Nitrate Ionic Liquid. J Phys Chem A 2022; 126:373-394. [PMID: 35014846 DOI: 10.1021/acs.jpca.1c07408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To develop chemical kinetics models for the combustion of ionic liquid-based monopropellants, identification of the elementary steps in the thermal and catalytic decomposition of components such as 2-hydroxyethylhydrazinium nitrate (HEHN) is needed but is currently not well understood. The first decomposition step in protic ionic liquids such as HEHN is typically the proton transfer from the cation to the anion, resulting in the formation of 2-hydroxyethylhydrazine (HEH) and HNO3. In the first part of this investigation, the high-temperature thermal decomposition of HEH is probed with flash pyrolysis (<1400 K) and vacuum ultraviolet (10.45 eV) photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS). Next, the investigation into the thermal and catalytic decomposition of HEHN includes two mass spectrometric techniques: (1) tunable VUV-PI-TOFMS (7.4-15 eV) and (2) ambient ionization mass spectrometry utilizing both plasma and laser ionization techniques whereby HEHN is introduced onto a heated inert or iridium catalytic surface and the products are probed. The products can be identified by their masses, their ionization energies, and their collision-induced fragmentation patterns. Formation of product species indicates that catalytic surface recombination is an important reaction process in the decomposition mechanism of HEHN. The products and their possible elementary reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Steven D Chambreau
- Jacobs Technology, Inc., Edwards Air Force Base, California 93524, United States
| | - Denisia M Popolan-Vaida
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhenpeng Zhou
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Timothy A Brown
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul Jones
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Kuanliang Shao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen R Leone
- Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Jia Y, Shang N, He X, Nsabimana A, Gao Y, Ju J, Yang X, Zhang Y. Electrocatalytically active cuprous oxide nanocubes anchored onto macroporous carbon composite for hydrazine detection. J Colloid Interface Sci 2022; 606:1239-1248. [PMID: 34492462 DOI: 10.1016/j.jcis.2021.08.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/24/2023]
Abstract
Cuprous oxide (Cu2O) is a p-type semiconductor with excellent catalytic activity and stability that has gained much attention because it is non-toxic, abundant, and inexpensive. Porous carbon materials have large specific surface areas, which offer abundant electroactive sites, enhance the electrical conductivity of materials, and prevent the aggregation of Cu2O nanocubes. In this study, a composite with high electrocatalytic activity was prepared based on Cu2O nanocubes anchored onto three-dimensional macroporous carbon (MPC) by a simple, eco-friendly, and cheap method for hydrazine detection. Due to the synergistic effect of MPC and Cu2O, the sensor exhibited high electrocatalytic activity, sensitivity, better selectivity, and low limit of detection. The resulting sensor could be a sensitive and effective platform for detecting hydrazine and promising practical applications.
Collapse
Affiliation(s)
- Yanan Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, Baoding 071001, PR China
| | - Xiaobo He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Yongjun Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jian Ju
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
12
|
Kang J, Zhang G, Chen B, Chen L, Wu R, Zhou X, Hang J, Zheng C, Xia C. Excessive consumption mechanism of hydrazine in the reaction with ReO 4−: Re species evolution and ReO 2· nH 2O-catalyzed decomposition. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00606e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ReO4− is slowly reduced to ReO42− and Re(iv) species by hydrazine, and ReO2·nH2O catalyzes hydrazine decomposition.
Collapse
Affiliation(s)
- Jinyang Kang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guikai Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Chen
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rulei Wu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoyuan Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jiahui Hang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chengbin Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
13
|
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO 2: Effect of Reaction Parameters on the Activity. NANOMATERIALS 2021; 11:nano11051340. [PMID: 34069534 PMCID: PMC8161091 DOI: 10.3390/nano11051340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
In the present work, an Ir/CeO2 catalyst was prepared by the deposition-precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma-mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime.
Collapse
|
14
|
Lu X, Zhang J, Chen WK, Roldan A. Kinetic and mechanistic analysis of NH 3 decomposition on Ru(0001), Ru(111) and Ir(111) surfaces. NANOSCALE ADVANCES 2021; 3:1624-1632. [PMID: 36132568 PMCID: PMC9418880 DOI: 10.1039/d1na00015b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 06/15/2023]
Abstract
We investigated the catalytic NH3 decomposition on Ru and Ir metal surfaces using density functional theory. The reaction mechanisms were unraveled on both metals, considering that, on the nano-scale, Ru particles may also present an fcc structure, hence, leading to three energy profiles. We implemented thermodynamic and kinetic parameters obtained from DFT into microkinetic simulations. Batch reactor simulations suggest that hydrogen generation starts at 400 K, 425 K and 600 K on Ru(111), Ru(0001) and Ir(111) surfaces, respectively, in excellent agreement with experiments. During the reaction, the main surface species on Ru are NH, N and H, whereas on Ir(111), it is mainly NH. The rate-determining step for all surfaces is the formation of molecular nitrogen. We also performed temperature-programmed reaction simulations and inspected the desorption spectra of N2 and H2 as a function of temperature, which highlighted the importance of N coverage on the desorption rate.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Jing Zhang
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Wen-Kai Chen
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
15
|
Zhang A, Yao Q, Lu ZH. Recent Progress on Catalysts for Hydrogen Evolution from Decomposition of Hydrous Hydrazine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Barlocco I, Capelli S, Lu X, Tumiati S, Dimitratos N, Roldan A, Villa A. Role of defects in carbon materials during metal-free formic acid dehydrogenation. NANOSCALE 2020; 12:22768-22777. [PMID: 33174567 DOI: 10.1039/d0nr05774f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Commercial graphite (GP), graphite oxide (GO), and two carbon nanofibers (CNF-PR24-PS and CNF-PR24-LHT) were used as catalysts for the metal-free dehydrogenation reaction of formic acid (FA) in the liquid phase. Raman and XPS spectroscopy demonstrated that the activity is directly correlated with the defectiveness of the carbon material (GO > CNF-PR24-PS > CNF-PR24-LHT > GP). Strong deactivation phenomena were observed for all the catalysts after 5 minutes of reaction. Density functional theory (DFT) calculations demonstrated that the single vacancies present on the graphitic layers are the only active sites for FA dehydrogenation, while other defects, such as double vacancies and Stone-Wales (SW) defects, rarely adsorb FA molecules. Two different reaction pathways were found, one passing through a carboxyl species and the other through a hydroxymethylene intermediate. In both mechanisms, the active sites were poisoned by an intermediate species such as CO and atomic hydrogen, explaining the catalyst deactivation observed in the experimental results.
Collapse
Affiliation(s)
- Ilaria Barlocco
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jiao D, Tian Y, Wang H, Cai Q, Zhao J. Single transition metal atoms anchored on a C 2N monolayer as efficient catalysts for hydrazine electrooxidation. Phys Chem Chem Phys 2020; 22:16691-16700. [PMID: 32658242 DOI: 10.1039/d0cp02930k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Searching for highly-efficient and low-cost electrocatalysts for the hydrazine oxidation reaction (HzOR) is a key issue in the development of direct hydrazine fuel cells for hydrogen production, which is a promising energy-efficient conversion technology to replace the sluggish oxygen evolution reaction in water splitting. Herein, the potential of a series of single transition metal atoms anchored on nitrogenated holey graphene (TM@C2N, TM = Ti, Mn, Fe, Co, Ni, Cu, Mo, Rh, Ru, Pd, Pt, Au, Ag, and W) as catalysts for the HzOR was systematically explored by means of comprehensive density functional theory (DFT) computations. Our results revealed that these TM atoms anchored on a C2N monolayer exhibit high stability due to their strong interactions with the N atoms on the C2N monolayer. Furthermore, on the basis of the computed free energy profiles, Ru@C2N, Mo@C2N, Ti@C2N, Co@C2N, and Fe@C2N were shown to display high HzOR catalytic activity due to their lower (or comparable) limiting potential compared to the well-established Fe-doped CoS2 nanosheet. In particular, Ru@C2N is identified as the best catalyst with the lowest limiting potential of -0.24 V due to its optimum difference between the adsorption strength of N2H3* and N2H2* species. More interestingly, we found that single Mo and Ti atoms also exhibit excellent catalytic performance for the hydrogen evolution reaction, suggesting their bifunctional activity towards hydrazine splitting for H2 production. Our findings provide a new avenue to develop an efficient single-atom electrocatalyst for experimental validation to convert hydrazine into hydrogen.
Collapse
Affiliation(s)
- Dongxu Jiao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| | | | | | | | | |
Collapse
|
18
|
Yao Q, Ding Y, Lu ZH. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00766h] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We focus on the recent advances in non-noble metal catalyst design, synthesis and applications in dehydrogenation of chemical hydrides (e.g. NaBH4, NH3BH3, NH3, N2H4, N2H4BH3) due to their high hydrogen contents and CO-free H2 production.
Collapse
Affiliation(s)
- Qilu Yao
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Yiyue Ding
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| |
Collapse
|