1
|
Liu Z, Brian D, Sun X. PyCTRAMER: A Python package for charge transfer rate constant of condensed-phase systems from Marcus theory to Fermi's golden rule. J Chem Phys 2024; 161:064101. [PMID: 39120028 DOI: 10.1063/5.0224524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
In this work, we introduce PyCTRAMER, a comprehensive Python package designed for calculating charge transfer (CT) rate constants in disordered condensed-phase systems at finite temperatures, such as organic photovoltaic (OPV) materials. PyCTRAMER is a restructured and enriched version of the CTRAMER (Charge-Transfer RAtes from Molecular dynamics, Electronic structure, and Rate theory) package [Tinnin et al. J. Chem. Phys. 154, 214108 (2021)], enabling the computation of the Marcus CT rate constant and the six levels of the linearized semiclassical approximations of Fermi's golden rule (FGR) rate constant. It supports various types of intramolecular and intermolecular CT transitions from the excitonic states to CT state. Integrating quantum chemistry calculations, all-atom molecular dynamics (MD) simulations, spin-boson model construction, and rate constant calculations, PyCTRAMER offers an automatic workflow for handling photoinduced CT processes in explicit solvent environments and interfacial CT in amorphous donor/acceptor blends. The package also provides versatile tools for individual workflow steps, including electronic state analysis, state-specific force field construction, MD simulations, and spin-boson model construction from energy trajectories. We demonstrate the software's capabilities through two examples, highlighting both intramolecular and intermolecular CT processes in prototypical OPV systems.
Collapse
Affiliation(s)
- Zengkui Liu
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Xiang Sun
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
2
|
London N, Bu S, Johnson B, Ananth N. Mean-Field Ring Polymer Rates Using a Population Dividing Surface. J Phys Chem A 2024; 128:5730-5739. [PMID: 38976564 DOI: 10.1021/acs.jpca.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mean-field ring polymer molecular dynamics offers a computationally efficient method for the simulation of reaction rates in multilevel systems. Previous work has established that, to model a nonadiabatic state-to-state reaction accurately, it is necessary to ensure reactive trajectories form kinked ring polymer configurations at the dividing surface. Building on this idea, we introduce a population difference coordinate and a reactive flux expression modified to only include contributions from kinked configurations. We test the accuracy of the resulting mean-field rate theory on a series of linear vibronic coupling model systems. We demonstrate that this new kMF-RP rate approach is efficient to implement and quantitatively accurate for models over a wide range of driving forces, coupling strengths, and temperatures.
Collapse
Affiliation(s)
- Nathan London
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Siyu Bu
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Britta Johnson
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Nandini Ananth
- Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Koczor-Benda Z, Mateeva T, Rosta E. Direct Calculation of Electron Transfer Rates with the Binless Dynamic Histogram Analysis Method. J Phys Chem Lett 2023; 14:9935-9942. [PMID: 37903301 PMCID: PMC10641885 DOI: 10.1021/acs.jpclett.3c02624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
Umbrella sampling molecular dynamics simulations are widely used to enhance sampling along the reaction coordinates of chemical reactions. The effect of the artificial bias can be removed using methods such as the dynamic weighted histogram analysis method (DHAM), which in addition to the global free energy profile also provides kinetic information about barrier-crossing rates directly from the Markov matrix. Here we present a binless formulation of DHAM that extends DHAM to high-dimensional and Hamiltonian-based biasing to allow the study of electron transfer (ET) processes, for which enhanced sampling is usually not possible based on simple geometric grounds. We show the capabilities of binless DHAM on examples such as aqueous ferrous-ferric ET and intramolecular ET in the radical anion of benzoquinone-tetrathiafulvalene-benzoquinone (Q-TTF-Q)-. From classical Hamiltonian-based umbrella sampling simulations and electronic coupling values from quantum chemistry calculations, binless DHAM provides ET rates for adiabatic and nonadiabatic ET reactions alike in excellent agreement with experimental results.
Collapse
Affiliation(s)
- Zsuzsanna Koczor-Benda
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Teodora Mateeva
- Department
of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| |
Collapse
|
4
|
Anderson MC, Schile AJ, Limmer DT. Nonadiabatic transition paths from quantum jump trajectories. J Chem Phys 2022; 157:164105. [DOI: 10.1063/5.0102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a means of studying rare reactive pathways in open quantum systems using transition path theory and ensembles of quantum jump trajectories. This approach allows for the elucidation of reactive paths for dissipative, nonadiabatic dynamics when the system is embedded in a Markovian environment. We detail the dominant pathways and rates of thermally activated processes and the relaxation pathways and photoyields following vertical excitation in a minimal model of a conical intersection. We find that the geometry of the conical intersection affects the electronic character of the transition state as defined through a generalization of a committor function for a thermal barrier crossing event. Similarly, the geometry changes the mechanism of relaxation following a vertical excitation. Relaxation in models resulting from small diabatic coupling proceeds through pathways dominated by pure dephasing, while those with large diabatic coupling proceed through pathways limited by dissipation. The perspective introduced here for the nonadiabatic dynamics of open quantum systems generalizes classical notions of reactive paths to fundamentally quantum mechanical processes.
Collapse
Affiliation(s)
- Michelle C. Anderson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Addison J. Schile
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Lawrence JE, Manolopoulos DE. An improved path-integral method for golden-rule rates. J Chem Phys 2020; 153:154113. [PMID: 33092388 DOI: 10.1063/5.0022535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for the calculation of reaction rates in the Fermi golden-rule limit, which accurately captures the effects of tunneling and zero-point energy. The method is based on a modification of the recently proposed golden-rule quantum transition state theory (GR-QTST) of Thapa, Fang, and Richardson [J. Chem. Phys. 150, 104107 (2019)]. While GR-QTST is not size consistent, leading to the possibility of unbounded errors in the rate, our modified method has no such issue and so can be reliably applied to condensed phase systems. Both methods involve path-integral sampling in a constrained ensemble; the two methods differ, however, in the choice of constraint functional. We demonstrate numerically that our modified method is as accurate as GR-QTST for the one-dimensional model considered by Thapa and co-workers. We then study a multidimensional spin-boson model, for which our method accurately predicts the true quantum rate, while GR-QTST breaks down with an increasing number of boson modes in the discretization of the spectral density. Our method is able to accurately predict reaction rates in the Marcus inverted regime without the need for the analytic continuation required by Wolynes theory.
Collapse
Affiliation(s)
- Joseph E Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
6
|
Lawrence JE, Manolopoulos DE. Confirming the role of nuclear tunneling in aqueous ferrous–ferric electron transfer. J Chem Phys 2020; 153:154114. [DOI: 10.1063/5.0022678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Joseph E. Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Lawrence JE, Manolopoulos DE. A general non-adiabatic quantum instanton approximation. J Chem Phys 2020; 152:204117. [DOI: 10.1063/5.0009109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph E. Lawrence
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|