1
|
Choi DY, Ha CH, Lee SJ, Cheon SH, Seong GH. Fucoidan-chitosan nanocarriers for anticancer therapy through chemodynamic, photothermal, and glucose starvation strategies. Colloids Surf B Biointerfaces 2025; 253:114726. [PMID: 40288112 DOI: 10.1016/j.colsurfb.2025.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The tumour microenvironment (TME) presents a distinctive set of challenges and opportunities in the context of targeted cancer therapies, offering potential avenues for reducing non-specific cell death and side effects on normal cells. By combining chemodynamic therapy, starvation therapy, and photothermal therapy, our approach aims to activate drug release and generate reactive oxygen species within the TME. Specifically, we developed a fucoidan-chitosan (F/CS) nanocarrier loaded with 3,3',5,5'-tetramethylbenzidine (T), Prussian blue (P), and glucose oxidase (GOx) (F/CS@TPGOx). It has been reported that fucoidan and chitosan target P-selectin and the glucose-rich microenvironment of pathological cancer. Furthermore, F/CS@TPGOx at a concentration of 4 µg/mL was observed to reduce cancer cell viability to less than 20 % following a four-hour incubation period. This indicates that fucoidan, the carrier, exhibits anticancer activity that is more pronounced than that observed in conventional anticancer nanocarriers. The findings demonstrated the efficacy of F/CS@TPGOx in cancer cell death in both in vitro and in vivo settings. This suggests F/CS@TPGOx as a promising material for targeted cancer therapy with the potential to be used in clinical biomedicine as a therapeutic platform with high efficacy and minimal side effects.
Collapse
Affiliation(s)
- Da Yeong Choi
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Se Hwa Cheon
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
2
|
de Barros HR, da Silva RTP, Fernandes R, Toro-Mendoza J, Coluzza I, Temperini MLA, Cordoba de Torresi SI. Unraveling the Nano-Bio Interface Interactions of a Lipase Adsorbed on Gold Nanoparticles under Laser Excitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5663-5672. [PMID: 38451216 DOI: 10.1021/acs.langmuir.3c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The complex nature and structure of biomolecules and nanoparticles and their interactions make it challenging to achieve a deeper understanding of the dynamics at the nano-bio interface of enzymes and plasmonic nanoparticles subjected to light excitation. In this study, circular dichroism (CD) and Raman spectroscopic experiments and molecular dynamics (MD) simulations were used to investigate the potential changes at the nano-bio interface upon plasmonic excitation. Our data showed that photothermal and thermal heating induced distinct changes in the secondary structure of a model nanobioconjugate composed of lipase fromCandida antarcticafraction B (CALB) and gold nanoparticles (AuNPs). The use of a green laser led to a substantial decrease in the α-helix content of the lipase from 66% to 13% and an increase in the β-sheet content from 5% to 31% compared to the initial conformation of the nanobioconjugate. In contrast, the differences under similar thermal heating conditions were only 55% and 11%, respectively. This study revealed important differences related to the enzyme secondary structure, enzyme-nanoparticle interactions, and the stability of the enzyme catalytic triad (Ser105-Asp187-His224), influenced by the instantaneous local temperature increase generated from photothermal heating compared to the slower rate of thermal heating of the bulk. These results provide valuable insights into the interactions between biomolecules and plasmonic nanoparticles induced by photothermal heating, advancing plasmonic biocatalysis and related fields.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 2014, Spain
| | - Rafael Trivella Pacheco da Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Rafaella Fernandes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Jhoan Toro-Mendoza
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 2014, Spain
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Científicas, Carretera Panamericana, Km 11, Altos de Pipe, Caracas 1020, Venezuela
| | - Ivan Coluzza
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Marcia L A Temperini
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| | - Susana I Cordoba de Torresi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000 São Paulo, Brasil
| |
Collapse
|
3
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
4
|
Tang X, Zhang L, Huang M, Wang F, Xie G, Huo R, Gao R. Selective enhanced cytotoxicity of amino acid deprivation for cancer therapy using thermozyme functionalized nanocatalyst. J Nanobiotechnology 2024; 22:53. [PMID: 38326899 PMCID: PMC10848425 DOI: 10.1186/s12951-024-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Enzyme therapy based on differential metabolism of cancer cells has demonstrated promising potential as a treatment strategy. Nevertheless, the therapeutic benefit of reported enzyme drugs is compromised by their uncontrollable activity and weak stability. Additionally, thermozymes with high thermal-stability suffer from low catalytic activity at body temperature, preventing them from functioning independently. RESULTS Herein, we have developed a novel thermo-enzymatic regulation strategy for near-infrared (NIR)-triggered precise-catalyzed photothermal treatment of breast cancer. Our strategy enables efficient loading and delivery of thermozymes (newly screened therapeutic enzymes from thermophilic bacteria) via hyaluronic acid (HA)-coupled gold nanorods (GNRs). These nanocatalysts exhibit enhanced cellular endocytosis and rapid enzyme activity enhancement, while also providing biosafety with minimized toxic effects on untargeted sites due to temperature-isolated thermozyme activity. Locally-focused NIR lasers ensure effective activation of thermozymes to promote on-demand amino acid deprivation and photothermal therapy (PTT) of superficial tumors, triggering apoptosis, G1 phase cell cycle arrest, inhibiting migration and invasion, and potentiating photothermal sensitivity of malignancies. CONCLUSIONS This work establishes a precise, remotely controlled, non-invasive, efficient, and biosafe nanoplatform for accurate enzyme therapy, providing a rationale for promising personalized therapeutic strategies and offering new prospects for high-precision development of enzyme drugs.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lijuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Mingwang Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Rui Huo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
6
|
Wang F, Liu Y, Du C, Gao R. Current Strategies for Real-Time Enzyme Activation. Biomolecules 2022; 12:biom12050599. [PMID: 35625527 PMCID: PMC9139169 DOI: 10.3390/biom12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Enzyme activation is a powerful means of achieving biotransformation function, aiming to intensify the reaction processes with a higher yield of product in a short time, and can be exploited for diverse applications. However, conventional activation strategies such as genetic engineering and chemical modification are generally irreversible for enzyme activity, and they also have many limitations, including complex processes and unpredictable results. Recently, near-infrared (NIR), alternating magnetic field (AMF), microwave and ultrasound irradiation, as real-time and precise activation strategies for enzyme analysis, can address many limitations due to their deep penetrability, sustainability, low invasiveness, and sustainability and have been applied in many fields, such as biomedical and industrial applications and chemical synthesis. These spatiotemporal and controllable activation strategies can transfer light, electromagnetic, or ultrasound energy to enzymes, leading to favorable conformational changes and improving the thermal stability, stereoselectivity, and kinetics of enzymes. Furthermore, the different mechanisms of activation strategies have determined the type of applicable enzymes and manipulated protocol designs that either immobilize enzymes on nanomaterials responsive to light or magnetic fields or directly influence enzymatic properties. To employ these effects to finely and efficiently activate enzyme activity, the physicochemical features of nanomaterials and parameters, including the frequency and intensity of activation methods, must be optimized. Therefore, this review offers a comprehensive overview related to emerging technologies for achieving real-time enzyme activation and summarizes their characteristics and advanced applications.
Collapse
|
7
|
Soy S, Sharma SR, Nigam VK. Bio-fabrication of thermozyme-based nano-biosensors: their components and present scenario. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2022; 33:5523-5533. [PMID: 38624939 PMCID: PMC8800403 DOI: 10.1007/s10854-022-07741-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/06/2022] [Indexed: 05/30/2023]
Abstract
An amalgamation of microbiology, biocatalysis, recombinant molecular biology, and nanotechnology is crucial for groundbreaking innovation in developing nano-biomedicines and sensoristics. Enzyme-based nano-biosensor finds prospective applications in various sectors (environmental, pharmaceutical, food, biorefineries). These applications demand reliable catalytic efficiency and functionality of the enzyme under an extreme operational environment for a prolonged period. Over the last few years, bio-fabrication of nano-biosensors in conjunction with thermozymes from thermophilic microbes is being sought after as a viable design. Thermozymes are known for their robustness, are chemically resistant toward organic solvents, possess higher durability for constant use, catalytic ability, and stability at elevated temperatures. Additionally, several other attributes of thermozymes like substrate specificity, selectivity, and sensitivity make them desirable in developing a customized biosensor. In this review, crucial designing aspects of enzyme-based nano-biosensors like enzyme immobilization on an electrode surface, new materials derived from microbial sources (biopolymers based nanocomposites), improvisation measures for sensitivity, and selectivity have been addressed. It also covers microbial biosynthesis of nanomaterials used to develop sensoristic devices and its numerous applications such as wastewater treatment, biorefineries, and diagnostics. The knowledge will pave the way toward creating consistent eco-friendly, economically viable nanostructured-based technologies with broad applicability and exploitation for industrial use in the near future.
Collapse
Affiliation(s)
- Snehi Soy
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
8
|
da Silva RTP, Ribeiro de Barros H, Sandrini DMF, Córdoba de Torresi SI. Stimuli-Responsive Regulation of Biocatalysis through Metallic Nanoparticle Interaction. Bioconjug Chem 2022; 33:53-66. [PMID: 34914373 DOI: 10.1021/acs.bioconjchem.1c00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The remote control of biocatalytic processes in an extracellular medium is an exciting idea to deliver innovative solutions in the biocatalysis field. With this purpose, metallic nanoparticles (NPs) are great candidates, as their inherent thermal, electric, magnetic, and plasmonic properties can readily be manipulated upon external stimuli. Exploring the unique NP properties beyond an anchoring platform for enzymes brings up the opportunity to extend the efficiency of biocatalysts and modulate their activity through triggered events. In this review, we discuss a set of external stimuli, such as light, electricity, magnetism, and temperature, as tools for the regulation of nanobiocatalysis, including the challenges and perspectives regarding their use. In addition, we elaborate on the use of combined stimuli that create a more refined framework in terms of a multiresponsive system. Finally, we envision this review might instigate researchers in this field of study with a set of promising opportunities in the near future.
Collapse
Affiliation(s)
- Rafael T P da Silva
- Instituto de Química, Universidade de São Paulo, São Paulo (SP), 05508-000, Brazil
| | | | | | | |
Collapse
|
9
|
Cao A, Sang LX, Yu Z, Zhao Y, Wang X, Wang C, Ma M. Investigation of the local photothermal effects by fabricating CQDs/Au/TiO2 photoelectrode in PEC water splitting system. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02113c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high efficiency of photoanode material is great significant for photoelectrochemical (PEC) water splitting. Herein, CQDs/Au/TiO2 nanorods array composite photoanode was constructed with special attention to local photothermal effects. The...
Collapse
|
10
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
11
|
Wang Y, Cheng H, He JR, Yao QX, Li LL, Liang ZH, Li X. Enzymes-Catalyzed Knoevenagel Condensation Promoted by Ionic Liquid and Deep Eutectic Solvent. Catal Letters 2021. [DOI: 10.1007/s10562-021-03718-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
de Barros HR, López-Gallego F, Liz-Marzán LM. Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry 2021; 60:991-998. [PMID: 32643921 DOI: 10.1021/acs.biochem.0c00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of enzymes is highly relevant toward orchestrating cell-free and stepwise biotransformations, thereby maximizing their overall performance. Plasmonic nanomaterials offer a great opportunity to tune the functionality of enzymes through their remarkable optical properties. Localized surface plasmon resonances (LSPR) can be used to modify chemical transformations at the nanomaterial's surface, upon light irradiation. Incident light can promote energetic processes, which may be related to an increase of local temperature (photothermal effects) but also to effects triggered by generated hotspots or hot electrons (photoelectronic effects). As a consequence, light irradiation of the protein-nanomaterial interface affects enzyme functionality. To harness these effects to finely and remotely regulate enzyme activity, the physicochemical features of the nanomaterial, properties of the incident light, and parameters governing molecular interactions must be optimized. In this Perspective, we discuss relevant examples that illustrate the use of plasmonic nanoparticles to control enzyme function through LSPR excitation. Finally, we also highlight the importance of expanding the use of plasmonic nanomaterials to the immobilization of multienzyme systems for light-driven regulation of cell-free biosynthetic pathways. Although this concept is living its infancy, we encourage the scientific community to advance in the development of novel light-controlled biocatalytic plasmonic nanoconjugates and explore their application in biosensing, applied biocatalysis, and biomedicine.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, São Paulo Brazil
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
| |
Collapse
|
13
|
Wang Y, Wang N. Hydrolase-Catalyzed Promiscuous Reactions and Applications in Organic Synthesis. Mol Biotechnol 2021. [DOI: 10.5772/intechopen.89918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of biocatalysis becomes increasingly recognized as an efficient and green tool for modern organic synthesis. Biocatalytic promiscuity, a new frontier extended the use of enzymes in organic synthesis, has attracted much attention and expanded rapidly in the past decade. It focuses on the enzyme catalytic activities with unnatural substrates and alternative chemical transformations. Exploiting enzyme catalytic unconventional reactions might lead to improvements in existing catalysts and provide novel synthesis pathways that are currently not available. Among these enzymes, hydrolase (such as lipase, protease, acylase) undoubtedly has received special attention since they display remarkable activities for some unexpected reactions such as aldol reaction and other novel carbon-carbon and carbon-heteroatom bond-forming reactions. This chapter introduces the recent progress in hydrolase catalytic unconventional reactions and application in organic synthesis. Some important examples of hydrolase catalytic unconventional reactions in addition reactions are reviewed, highlighting the catalytic promiscuity of hydrolases focuses on aldol reaction, Michael addition, and multicomponent reactions.
Collapse
|
14
|
de Barros HR, García I, Kuttner C, Zeballos N, Camargo PHC, de Torresi SIC, López-Gallego F, Liz-Marzán LM. Mechanistic Insights into the Light-Driven Catalysis of an Immobilized Lipase on Plasmonic Nanomaterials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Heloise Ribeiro de Barros
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, Brazil
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
| | - Isabel García
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
| | - Christian Kuttner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
| | - Nicoll Zeballos
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
| | - Pedro H. C. Camargo
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, Brazil
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 00100, Finland
| | - Susana Inés Cordoba de Torresi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, Brazil
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia − San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Pepsin-Catalyzed Asymmetric Cross Aldol Reaction Promoted by Ionic Liquids and Deep Eutectic Solvents. Catal Letters 2020. [DOI: 10.1007/s10562-020-03176-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|