1
|
Liu H, Gao F, Luo N, Wen J, Yi H, Tang X. Self-protected Chlorella@Mn catalyst with excellent resistance to alkali/alkaline earth metal for NOx reduction by NH 3. J Colloid Interface Sci 2025; 679:634-652. [PMID: 39388950 DOI: 10.1016/j.jcis.2024.09.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
In the selective catalytic reduction of NOx by NH3 (NH3-SCR), conventional Mn-based denitration catalysts often suffered from susceptibility to poisoning by alkali and alkaline earth metals, this paper presented an innovative self-protected Chlorella@Mn denitration catalyst. Remarkably, in the presence of high concentrations (2 wt%) of alkali and alkaline earth metal oxides, the Chlorella@Mn catalyst sustained a NOx conversion exceeding 96 % at 175 °C. At an even higher concentration (4 wt%), NOx conversion above 90 % at 175 °C, surface analysis revealed that POMn sites acted as sacrificial sites, binding to the alkali and alkaline earth metals, the Chlorella@Mn catalyst surface naturally carried a spectrum of acidic species (such as SO42-, PO3-, SiO32-), proficient in capturing alkali/alkaline earth metal effectively, elements such as S, P, and Si formed bonds with K, Na, Ca, and Mg. The synergistic protection of the active sites and the surface elements avoided the deactivation of the catalyst. The detrimental effects of high concentrations of alkali and alkaline earth metals were primarily due to promoting an excessively high valence state of Mn on the catalyst surface and the reduction or loss of NH3 adsorption and activation at Brønsted acid sites. This research provided valuable insights for advancing the development of low-temperature denitration catalysts with improved resistance to alkali and alkaline earth metal poisoning.
Collapse
Affiliation(s)
- Hengheng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Ning Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajun Wen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
2
|
Cheng J, Yang Y, Liu X, Yan N, Jin F. Efficient Fe 3O 4/Fe Redox Cycle with Biomass Waste Glycerol for Net Carbon Benefit CO 2 Reduction. CHEMSUSCHEM 2025; 18:e202401662. [PMID: 39295088 DOI: 10.1002/cssc.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
CO2 utilization is a critical aspect of achieving a sustainable carbon cycle, particularly in the context of global efforts to achieve carbon neutrality. Drawing inspiration from geological chemistry, Fe-based hydrothermal CO2 reduction into valuable chemicals has emerged as a promising CO2 utilization strategy. However, the lack of a sustainable and direct Fe regeneration approach presents a notable challenge to the widespread adoption of this strategy. Herein, we propose a method for the direct reduction of Fe3O4 to Fe using biodiesel-waste glycerol. This method yields a remarkable 97.9 wt % of reduced Fe, which exhibits a high activity for CO2 (HCO3 -) reduction to formic acid, maintaining a level of ~90 %. Our investigation reveals that the Fe3O4 reduction involves a direct hydrogen transfer from hydroxyl groups to lattice O atoms on the surface of Fe3O4, forming reductive H species. The presence of a polyhydroxy structure in glycerol facilitates the stabilization of surface H species, thereby enhancing the reduction efficiency process. Based on this mechanism, we explore the potential of using various polyols derived from woody biomass, which exhibit similar capabilities for the reduction of Fe3O4 as glycerol. These findings establish an efficient and sustainable Fe3O4/Fe redox cycle, which integrates waste biomass into circular carbon economy solutions and contributes to the overall net carbon benefit of CO2 utilization.
Collapse
Affiliation(s)
- Jiong Cheng
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Yang
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Liu
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Yan Q, Xiao J, Gui R, Chen Z, Li Y, Zhu T, Wang Q, Xin Y. Mechanistic Insight into the Promotion of the Low-Temperature NH 3-SCR Activity over NiMnFeO x LDO Catalysts: A Combined Experimental and DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20708-20717. [PMID: 38032314 DOI: 10.1021/acs.est.3c06849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.
Collapse
Affiliation(s)
- Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jiewen Xiao
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Rongrong Gui
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Zhenyu Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| |
Collapse
|
4
|
Wang Z, Peng S, Zhu C, Wang B, Du B, Cheng T, Jiang Z, Sun L. Study of the denitration performance of a ceramic filter using a manganese-based catalyst. RSC Adv 2022; 13:344-354. [PMID: 36605665 PMCID: PMC9769093 DOI: 10.1039/d2ra06677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
A MnO x /γ-Al2O3 catalyst was prepared by impregnation of manganese acetate and alumina. After optimizing the composition, it was loaded into a ceramic filter (CF) by a one-step coating method. The results show that MnO x /γ-Al2O3 had the best denitration activity when the Mn loading was 4 wt% with a calcination temperature of 400 °C. The MnO x /γ-Al2O3 catalyst ceramic filter (MA-CCF) was made by loading the CF twice with MnO x /γ-Al2O3. When face velocity (FV) was 1 m min-1, MA-CCF displayed more than 80% NO conversion at 125-375 °C and possessed a good resistance of H2O and SO2. The abundant surface adsorbed oxygen, dense membrane and high-density fiber structure on the outer layer of CF effectively protected the catalyst and could improve MA-CCF denitration activity. The multiple advantages of MA-CCF made it possible for good application prospects.
Collapse
Affiliation(s)
- Zhenzhen Wang
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
- Anhui Academy for Ecological and Environmental Science Research Hefei 230071 China
| | - Shuchuan Peng
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Bin Wang
- CNBM Environmental Protection Research Institute(Jiangsu)Co., Ltd. Yancheng 224051 China
| | - Bo Du
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Ting Cheng
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Zhaozhong Jiang
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Sun
- Anhui Academy for Ecological and Environmental Science Research Hefei 230071 China
| |
Collapse
|
5
|
Abstract
In recent years, low-temperature SCR (Selective Catalytic Reduction) denitrification technology has been popularized in non-power industries and has played an important role in the control of industrial flue gas NOx emissions in China. Currently, the most commonly used catalysts in industry are V2O5-WO3(MoO3)/TiO2, MnO2-based catalysts, CeO2-based catalysts, MnO2-CeO2 catalysts and zeolite SCR catalysts. The flue gas emitted during industrial combustion usually contains SO2, moisture and alkali metals, which can affect the service life of SCR catalysts. This paper summarizes the mechanism of catalyst poisoning and aims to reduce the negative effect of NH4HSO4 on the activity of the SCR catalyst at low temperatures in industrial applications. It also presents the outstanding achievements of domestic companies in denitrification in the non-power industry in recent years. Much progress has been made in the research and application of low-temperature NH3-SCR, and with the renewed demand for deeper NOx treatments, new technologies with lower energy consumption and more functions need to be developed.
Collapse
|
6
|
Lyu M, Zou J, Liu X, Yan T, Wang P, Zhang D. Insight on the anti-poisoning mechanism of in situ coupled sulfate over iron oxide catalysts in NO x reduction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ coupled sulfate uniquely migrated to the surface of iron oxide catalysts to capture metal poisons and thus maintained efficient adsorption and activation of NH3 and NOx reactants.
Collapse
Affiliation(s)
- Minghui Lyu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jingjing Zou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
The promoting mechanism of doping Mn, Co, and Ce on gas adsorption property and anti-SO2 oxidation over γ-Fe2O3 (001) surface: A density functional theory study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
|
9
|
Guo Y, Luo L, Zheng Y, Wang J, Zhu T. Low-medium temperature application of selective catalytic reduction denitration in cement flue gas through a pilot plant. CHEMOSPHERE 2021; 276:130182. [PMID: 34088084 DOI: 10.1016/j.chemosphere.2021.130182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Low-medium temperature application of selective catalytic reduction (SCR) denitration in cement flue gas was established and investigated in this study. The 2000 h continuous operation shows the concentration of NOx at the outlet can be maintained at 24 mg/Nm3 on average, while due to the increase of SO2 in flue gas, the NOx concentration increased to 57.5 mg/Nm3 after long time operation. The sulfur deposition is the main reason for catalyst deactivation, and SO2 is still a big obstacle for low-medium temperature SCR application in cement flue gas. The denitration efficiency was tested as fluctuated from 73.5% to 86.2%, and ammonia concentration after SCR was as still as high as 22.5-60.0 mg/Nm3 due to the excessive ammonia injection from selective non-catalytic reduction (SNCR), shows serious ammonia escape problem for SNCR, and the potential application of hybrid SNCR-SCR technology. In order to maintain the denitration efficiency above 85.0%, the gaseous hourly space velocity (GHSV) should not be exceeded 2800 h-1, the electrostatic precipitators (ESP) setting at 60 kV was relatively appropriate, the temperature of the flue gas should be kept at above 200 °C. The concentrations and toxic equivalent quantities (TEQs) of the PCDD/Fs congeners in the flue gas raised greatly after SCR reactor, indicating the PCDD/Fs concentration should be concerned during the application of low-medium temperature SCR, especially for the waste co-disposal processes.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Luo
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Zheng
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Wang
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingyu Zhu
- Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
10
|
Zhang W, Shi X, Yan Z, Shan Y, Zhu Y, Yu Y, He H. Design of High-Performance Iron–Niobium Composite Oxide Catalysts for NH 3-SCR: Insights into the Interaction between Fe and Nb. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenshuo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zidi Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
11
|
Poisoning Effects of Alkali and Alkaline Earth Metal Doping on Selective Catalytic Reduction of NO with NH3 over the Nb-Ce/Zr-PILC Catalysts. Catalysts 2021. [DOI: 10.3390/catal11030329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The poisoning effects of alkali metals (K and Na) and alkaline earth metals (Ca and Mg) on catalytic performance of the 2Nb4Ce/Zr-PILC catalyst for the selective catalytic reduction of NOx with NH3 (NH3-SCR) were investigated, and physicochemical properties of the catalysts were characterized by means of the X-ray diffraction XRD (XRD), Brunner−Emmet−Teller (BET), hydrogen temperature-programmed reduction (H2-TPR), X-ray Photoelectron Spectroscopy (XPS), ammonia temperature-programmed desorption (NH3-TPD), and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) techniques. Doping of M (M = K, Na, Ca, and Mg) deactivated the 2Nb4Ce/Zr-PILC catalyst according to the sequence of 0.8 K > 0.8 Na > 0.8 Ca > 0.8 Mg (M/Ce molar ratio = 0.8). The characterization results showed that the decreases in redox ability, NH3 adsorption, Ce3+/Ce4+ atomic ratio, and amount of the chemisorbed oxygen (Oβ) were the important factors influencing catalytic activities of the alkali metal-and alkaline earth metal-doped samples. Consequently, compared with the Mg- and Ca-doped samples, doping of K caused the 2Nb4Ce/Zr-PILC sample to possess the lowest redox ability, NH3 adsorption, and amount of the Oβ species, which resulted in an obvious deactivation effect.
Collapse
|
12
|
Abstract
Iron-based oxide catalysts for the NH3–SCR (selective catalytic reduction of NOx by NH3) reaction have gained attention due to their high catalytic activity and structural adjustability. In this work, iron–niobium, iron–titanate and iron–molybdenum composite oxides were synthesized by a co-precipitation method with or without the assistance of hexadecyl trimethyl ammonium bromide (CTAB). The catalysts synthesized with the assistance of CTAB (FeM0.3Ox-C, M = Nb, Ti, Mo) showed superior SCR performance in an operating temperature range from 150 °C to 400 °C compared to those without CTAB addition (FeM0.3Ox, M = Nb, Ti, Mo). To reveal such enhancement, the catalysts were characterized by N2-physisorption, XRD (Powder X-ray diffraction), NH3-TPD (temperature-programmed desorption of ammonia), DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), and H2-TPR (H2-Total Physical Response). It was found that the crystalline phase of Fe2O3 formed was influenced by the presence of CTAB in the preparation process, which favored the formation of crystalline γ-Fe2O3. Owing to the changed structure, the redox-acid properties of FeM0.3Ox-C catalysts were modified, with higher exposure of acid sites and improved ability of NO oxidation to NO2 at low-temperature, both of which also contributed to the improvement of NOx conversion. In addition, the weakened redox ability of Fe prevented the over-oxidation of NH3, thus accounting for the greatly improved high-temperature activity as well as N2 selectivity.
Collapse
|
13
|
Li Z, Yang J, Ma X, Cui J, Ma Y, Geng C, Kang Y, Yang C. In situ design of Cu and Co nanoparticles encapsulated in N-doped graphene with core–shell structure-derived 8-hydroxyquinoline complexes for the selective catalytic reduction of NO x by NH 3. NEW J CHEM 2020. [DOI: 10.1039/d0nj01513j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Cu and Co nanoparticles surrounding by N-doped graphene (labeled Cu@N-Gr and Co@N-Gr) catalysts exhibited excellent activity in the NH3-SCR, which is because the graphene shell can effectively prevent the agglomeration of active site.
Collapse
Affiliation(s)
- Zhifang Li
- College of Materials Science and Engineering
- Heilongjiang Province Key Laboratory of Polymeric Composite Material
- Qiqihar University
- Qiqihar
- China
| | - Jian Yang
- College of Materials Science and Engineering
- Heilongjiang Province Key Laboratory of Polymeric Composite Material
- Qiqihar University
- Qiqihar
- China
| | - Xiaoyu Ma
- College of Materials Science and Engineering
- Heilongjiang Province Key Laboratory of Polymeric Composite Material
- Qiqihar University
- Qiqihar
- China
| | - Jinxing Cui
- College of Materials Science and Engineering
- Heilongjiang Province Key Laboratory of Polymeric Composite Material
- Qiqihar University
- Qiqihar
- China
| | - Yuanyuan Ma
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Cui Geng
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Yan Kang
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Changlong Yang
- College of Materials Science and Engineering
- Heilongjiang Province Key Laboratory of Polymeric Composite Material
- Qiqihar University
- Qiqihar
- China
| |
Collapse
|