1
|
Fernández-Fariña S, Maneiro M, Zaragoza G, Seco JM, Pedrido R, González-Noya AM. Nickel, copper, and zinc dinuclear helicates: how do bulky groups influence their architecture? Dalton Trans 2024; 53:5676-5685. [PMID: 38445308 DOI: 10.1039/d4dt00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The ligand design factors that may influence the isolation of metallosupramolecular helicates or mesocates still deserve to be investigated. In this sense, dinuclear nickel(II), copper(II) and zinc(II) compounds were obtained by electrochemical synthesis using a family of five Schiff base ligands, H2Ln (n = 1-5), derived from bisphenylmethane and functionalized with bulky tert-butyl groups in the periphery and ethyl groups in the spacer. Six of the new complexes were characterized by X-ray crystallography, thus demonstrating that the helicate structure is predominant in the solid state. 1H NMR studies were performed for the zinc complexes to analyze if the helical architecture of the metal complexes is retained in solution. These studies reveal that the presence of a tert-butyl group in the ortho position with respect to the OH group is an essential factor identified for the existence of a helicate conformation in solution.
Collapse
Affiliation(s)
- Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, Edificio CACTUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Galicia, E-15782, Spain
| | - José M Seco
- Departamento de Química Orgánica Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.
| | - Ana M González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.
| |
Collapse
|
2
|
Charge Transfer Chromophores Derived from 3d-Row Transition Metal Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238175. [PMID: 36500270 PMCID: PMC9736222 DOI: 10.3390/molecules27238175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
A series of new charge transfer (CT) chromophores of "α-diimine-MII-catecholate" type (where M is 3d-row transition metals-Cu, Ni, Co) were derived from 4,4'-di-tert-butyl-2,2'-bipyridyl and 3,6-di-tert-butyl-o-benzoquinone (3,6-DTBQ) in accordance with three modified synthetic approaches, which provide high yields of products. A square-planar molecular structure is inherent for monomeric [CuII(3,6-Cat)(bipytBu)]∙THF (1) and NiII(3,6-Cat)(bipytBu) (2) chromophores, while dimeric complex [CoII(3,6-Cat)(bipytBu)]2∙toluene (3) units two substantially distorted heteroleptic D-MII-A (where D, M, A are donor, metal and acceptor, respectively) parts through a donation of oxygen atoms from catecholate dianions. Chromophores 1-3 undergo an effective photoinduced intramolecular charge transfer (λ = 500-715 nm, extinction coefficient up to 104 M-1·cm-1) with a concomitant generation of a less polar excited species, the energy of which is a finely sensitive towards solvent polarity, ensuring a pronounced negative solvatochromic effect. Special attention was paid to energetic characteristics for CT and interacting HOMO/LUMO orbitals that were explored by a synergy of UV-vis-NIR spectroscopy, cyclic voltammetry, and DFT study. The current work sheds light on the dependence of CT peculiarities on the nature of metal centers from various groups of the periodic law. Moreover, the "α-diimine-MII-catecholate" CT chromophores on the base of "late" transition elements with differences in d-level's electronic structure were compared for the first time.
Collapse
|
3
|
Molecular and Electronic Structures, Spectra, Electrochemistry and Anti‐bacterial Efficacy of Novel Heterocyclic Hydrazones of Phenanthrenequinone and Their Nickel(II) Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Pashanova KI, Poddel'sky AI, Piskunov AV. Complexes of “late” transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Do TH, Brown SN. Mono- and Bis(iminoxolene)iridium Complexes: Synthesis and Covalency in π Bonding. Inorg Chem 2022; 61:5547-5562. [PMID: 35357169 DOI: 10.1021/acs.inorgchem.1c04005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-(2,6-Diisopropylphenyl)-4,6-di-tert-butyl-o-iminobenzoquinone (Diso) reacts with the (cyclooctadiene)iridium chloride dimer to form a monoiminoxolene complex, (Diso)Ir(cod)Cl. Reaction of 2 equiv of the iminoquinone with chlorobis(cyclooctene)iridium dimer affords the bis-iminoxolene (Diso)2IrCl. This five-coordinate complex adopts a distorted square pyramidal structure with an apical chloride ligand and undergoes halide exchange to form an air-stable iodide complex. (Diso)2IrCl can be reduced by one electron to form neutral, square planar (Diso)2Ir, while oxidation with PhICl2 gives octahedral trans-(Diso)2IrCl2. The cis isomer can be prepared by air oxidation of (Diso)2IrCl; cis/trans isomerization is not observed even on prolonged heating. Structural and spectroscopic features of the complexes are consistent with the presence of strong, covalent π bonding between the metal and the iminoxolene ligands, with structural data suggesting between 45 and 60% iridium character in the π bonding orbitals, depending on the ancillary ligands. The spectroscopic similarity of (Diso)2Ir and (Diso)2IrCl to their cobalt congeners suggests that the first-row metal complexes likewise have appreciably covalent metal-iminoxolene π bonds.
Collapse
Affiliation(s)
- Thomas H Do
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
6
|
Martin CR, Park KC, Leith GA, Yu J, Mathur A, Wilson GR, Gange GB, Barth EL, Ly RT, Manley OM, Forrester KL, Karakalos SG, Smith MD, Makris TM, Vannucci AK, Peryshkov DV, Shustova NB. Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. J Am Chem Soc 2022; 144:4457-4468. [PMID: 35138840 DOI: 10.1021/jacs.1c11984] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gayathri B Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Richard T Ly
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Stavros G Karakalos
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M Makris
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Heterospin iron complexes with dioxolenes functionalized with stable radicals: quantum chemical study. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3347-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Starikov AG, Starikova AA, Minkin VI. Quantum Chemical Study of the Structures and Stability of Copper(II) Bis(diketonate) Dimers. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421030064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Starikov AG, Chegerev MG, Starikova AA, Minkin VI. Computational modeling of cobalt diketonate adducts with o-benzoquinones incorporating organosilicon radicals. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3086-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Chegerev MG, Starikova AA, Starikov AG, Minkin VI. Electronic Structure and Magnetic Properties of Mixed-Ligand Cobalt Complexes Containing Organogermanium Triangulenes. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220120142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Mukherjee R. Assigning Ligand Redox Levels in Complexes of 2-Aminophenolates: Structural Signatures. Inorg Chem 2020; 59:12961-12977. [PMID: 32881491 DOI: 10.1021/acs.inorgchem.0c00240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this Viewpoint is to provide a broad-ranging update of advances in the coordination chemistry of redox-active (noninnocent) 2-aminophenolates, with emphasis on two ligand backbone structural parameters, the average of C-O and C-N (C-O/N) bond distances and Δa values, signifying the degree of bond-length alternation in the six-membered ring, in order to identify the redox level of the coordinated ligands. In the absence of magnetic, spectroscopic, and redox results, it has been established that it is possible to assign the electronic ground state of a coordination complex of 2-aminophenolates with consideration of charge, metal-ligand bond distances, and two very promising ligand backbone structural parameters. From a closer look at the sensitive ligand backbone metrical parameters of a diversified group of about 120 transition-metal complexes, a few very useful generalizations have been made.
Collapse
|
12
|
Nickel(II) derivatives based on o-iminobenzoquinone-type ligands: Structural modifications, magnetism and electrochemical peculiarities. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Ershova IV, Piskunov AV. Complexes of Group III Metals based on o-Iminoquinone Ligands. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420030021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Starikova AA, Chegerev MG, Starikov AG. Mononuclear Cobalt and Iron o-Quinone Complexes with Tetradentate N-Donor Bases: Structures and Properties. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420030070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Starikov AG, Starikova AA, Minyaev RM, Minkin VI, Boldyrev AI. o-Quinone phenalenyl derivatives as expedient ligands for the design of magnetically active metal complexes: A computational study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Starikova AA, Chegerev MG, Starikov AG. Computational modeling of structure and magnetic properties of dinuclear di-o-benzoquinone iron complexes with linear polycyclic linkers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2747-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Wang JH, Dai JW, Li ZY, Yamashita M. Strong antiferromagnetic coupling of the cobalt(ii)–semiquinone radical in a dinuclear complex with 2,2′-bipyrimidine ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj00767f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new dinuclear cobalt(ii)–semiquinone radical complex was synthesised and displayed strong antiferromagnetic exchange coupling, having −90.25 cm−1 of a J value, between the cobalt(ii) centres and semiquinone radicals.
Collapse
Affiliation(s)
- Jin-Hua Wang
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- P. R. China
| | - Jing-Wei Dai
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- P. R. China
| | - Masahiro Yamashita
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- P. R. China
- WPI-Advanced Institute for Materials Research (AIMR)
| |
Collapse
|