1
|
Hans S, Kamal, Devi A, Adham M, Muskan, Ranaut S, Changotra A, Mazumder S, Samanta S. An o-Phenylene Bridged Noninnocent Bis-Azopyridyl Ligand and Its Copper Complexes: Synthesis, Characterization of Electron Transfer Events, and Use of the Cu Complexes for Oxidation of Alcohols. Inorg Chem 2025; 64:7930-7944. [PMID: 40228060 DOI: 10.1021/acs.inorgchem.4c05432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
In this report, an o-phenylene-bridged tetradented redox-noninnocent bis-azopyridyl ligand [L] and its copper complexes [1] and [2] were synthesized and characterized. The electron transfer events of [L], as well as [1] and [2], were characterized by single-crystal X-ray structure determination, various spectroscopic studies, and DFT calculations. While [1] [[L]Cu(II)Cl2] has unreduced [L], [2], [[L]•-Cu(I)Cl] contains a one-electron-reduced ligand [L]•- , which is antiferromagnetically coupled with the unpaired spin on Cu(II). Reduction of [2] by one electron generated the complex [2]•-, which remained in an electronically bistable situation in the form of valence tautomers: [2A]•-, [[L]•-Cu(I)Cl]•- and [2B]•-, [[L]2-Cu(II)Cl]•-. Further one-electron reduction of [2]•- generated a mixture of Cu complexes: [2A]-, [[L]2-Cu(I)]- and [2B]-, [[L]3•-Cu(II)]-. Complexes [1] and [2] were examined for the catalytic oxidation of alcohols. The complex [2] was more efficient than [1]. The protocol was highly efficient and versatile with both primary as well as secondary aromatic and aliphatic alcohols. Mechanistic investigations showed that the complex [2] generated [[L]•-Cu(I)OCH2Ph]•- (A) as the active catalyst, which subsequently, through its ligand-based redox events, acted as the catalyst over the course of the reaction.
Collapse
Affiliation(s)
- Shivali Hans
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Ambika Devi
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Mohd Adham
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Muskan
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Sheetal Ranaut
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Avtar Changotra
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| |
Collapse
|
2
|
Miller JD, Walsh MM, Lee K, Moore CE, Thomas CM. Hydrogen atom abstraction as a synthetic route to a square planar Co II complex with a redox-active tetradentate PNNP ligand. Chem Sci 2024:d4sc03364g. [PMID: 39220158 PMCID: PMC11362828 DOI: 10.1039/d4sc03364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Redox-active ligands improve the reactivity of transition metal complexes by facilitating redox processes independent of the transition metal center. A tetradentate square planar (PNCH2CH2NP)CoII (1) complex was synthesized and the ethylene backbone was dehydrogenated through hydrogen atom abstraction to afford (PNCHCHNP)CoII (2), which now contains a redox-active ligand. The ligand backbone of 2 can be readily hydrogenated with H2 to regenerate 1. Reduction of 1 and 2 with KC8 in the presence of 18-crown-6 results in cobalt-based reductions to afford [(PNCH2CH2NP)CoI][K(18-crown-6)] (3) and [(PNCHCHNP)CoI][K(18-crown-6)] (4), respectively. Cyclic voltammetry revealed two reversible oxidation processes for 2, presumed to be ligand-based. Following treatment of 2 with one equivalent of FcPF6, the one-electron oxidation product {[(PNCHCHNP)CoII(THF)][PF6]}·THF (5) was obtained. Treating 5 with an additional equivalent of FcPF6 affords the two-electron oxidation product [(PNCHCHNP)CoII][PF6]2 (6). Addition of PMe3 to 5 produced [(PNCHCHNP)CoII(PMe3)][PF6] (7). A host of characterization methods including nuclear magnetic resonance (NMR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, cyclic voltammetry, magnetic susceptibility measurements using SQUID magnetometry, single-crystal X-ray diffraction, and density functional theory calculations were used to assign 5 and 6 as ligand-based oxidation products of 2.
Collapse
Affiliation(s)
- Justin D Miller
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Mitchell M Walsh
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Kyounghoon Lee
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University Gyeongnam 52828 Republic of Korea
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
3
|
Rudolf R, Batman D, Mehner N, Walter RRM, Sarkar B. Redox-Active Triazole-Derived Mesoionic Imines with Ferrocenyl Substituents and their Metal Complexes: Directed Hydrogen-Bonding, Unusual C-H Activation and Ion-Pair Formation. Chemistry 2024; 30:e202400730. [PMID: 38634285 DOI: 10.1002/chem.202400730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
We present herein the synthesis, characterization and complexation of ferrocenyl-substituted MIIs (mesoionic imines) and their metal complexes. In the free MIIs, strong hydrogen bonding interactions are observed between the imine-N and the C-H bonds of the ferrocenyl substituents both in the solid state and in solution. The influence of this hydrogen bonding is so strong that complexation of the MIIs with [IrCp*Cl2]2 yields unique six-membered iridacycles via C-H-activation of the corresponding C-H-site at the Fc-substituent and not the Ph-substituent. This result is in contrast to previous reports in which always a preferential C-H activation at the phenyl substituent is observed in competitive reactions in the presence of ferrocenyl substituents. The corresponding Ir complexes formed after in-situ halide exchange reaction exist in either [Ir-I] contact or as [Ir]+I- solvent separated ion-pairs depending on the solvent polarity. The iodide coordinated and solvent separated ion-pairs display drastically different physical properties. The TEP (Tolman-electronic-parameter) of these ligands was determined and lines up with previously reported MII-ligands. The redox properties were investigated by a combination of electrochemical and spectroelectrochemical methods. We show here how non-covalent interactions can have a drastic influence on the physical and chemical properties of these new class of compounds.
Collapse
Affiliation(s)
- Richard Rudolf
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Derman Batman
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Niklas Mehner
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Robert R M Walter
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Biprajit Sarkar
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| |
Collapse
|
4
|
Zou M, Waldie KM. Redox-active ligand promoted electrophile addition at cobalt. Chem Commun (Camb) 2023. [PMID: 37997162 DOI: 10.1039/d3cc04869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The reactivity of an electron-rich cobalt complex bearing an o-phenylenediamide ligand with electrophilic CF3+ and F+ sources is reported. These reactions lead to generation of a Co(III)-CF3 or Co(III)-F complex, promoted by redox-active ligand-to-substrate two-electron transfer. The rate of trifluoromethyl addition at cobalt correlates with the potential difference between the cobalt complex and the CF3+ source. We present initial demonstrations of radical trifluoromethylation and nucleophilic fluorination of organic substrates, setting the stage for the development of electrocatalytic pathways for these bond-forming reactions.
Collapse
Affiliation(s)
- Minzhu Zou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Kate M Waldie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
5
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Suhr S, Walter R, Beerhues J, Albold U, Sarkar B. Rhodium Diamidobenzene Complexes: A Tale of Different Substituents on the Diamidobenzene Ligand. Chem Sci 2022; 13:10532-10545. [PMID: 36277629 PMCID: PMC9473529 DOI: 10.1039/d2sc03227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Diamidobenzene ligands are a prominent class of redox-active ligands owing to their electron reservoir behaviour, as well as the possibility of tuning the steric and the electronic properties of such ligands through the substituents on the N-atoms of the ligands. In this contribution, we present Rh(iii) complexes with four differently substituted diamidobenzene ligands. By using a combination of crystallography, NMR spectroscopy, electrochemistry, UV-vis-NIR/EPR spectroelectrochemistry, and quantum chemical calculations we show that the substituents on the ligands have a profound influence on the bonding, donor, electrochemical and spectroscopic properties of the Rh complexes. We present, for the first time, design strategies for the isolation of mononuclear Rh(ii) metallates whose redox potentials span across more than 850 mV. These Rh(ii) metallates undergo typical metalloradical reactivity such as activation of O2 and C–Cl bond activations. Additionally, we also show that the substituents on the ligands dictate the one versus two electron nature of the oxidation steps of the Rh complexes. Furthermore, the oxidative reactivity of the metal complexes with a [CH3]+ source leads to the isolation of a unprecedented, homobimetallic, heterovalent complex featuring a novel π-bonded rhodio-o-diiminoquionone. Our results thus reveal several new potentials of the diamidobenzene ligand class in organometallic reactivity and small molecule activation with potential relevance for catalysis. Diamidobenzene ligands are versatile platforms in organometallic Rh-chemistry. They allow the isolation of tunable mononuclear ate-complexes, and the formation of a unprecedented homobimetallic, heterovalent complex.![]()
Collapse
Affiliation(s)
- Simon Suhr
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Robert Walter
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstr. 34-36 14195 Berlin Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
7
|
Khan FF, Chowdhury AD, Lahiri GK. Bond Activations Assisted by Redox Active Ligand Scaffolds. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Farheen Fatima Khan
- Department of Chemistry; Indian Institute of Technology Bombay; Powai 400076 Mumbai India
| | | | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; Powai 400076 Mumbai India
| |
Collapse
|