1
|
Benmansour S, Pintado-Zaldo C, Casal-García SH, Martínez-Ponce J, Gómez-García CJ. Anilato-Based Coordination Polymers with Slow Relaxation of the Magnetization: Role of the Synthetic Method and Anilato Ligand. Chemistry 2024; 30:e202400410. [PMID: 38483106 DOI: 10.1002/chem.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/05/2024]
Abstract
We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] ⋅ 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] ⋅ 4fma ⋅ 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.
Collapse
Affiliation(s)
- Samia Benmansour
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Cristina Pintado-Zaldo
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Sofía H Casal-García
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Javier Martínez-Ponce
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| | - Carlos J Gómez-García
- Departmento de Química Inorgánica, Facultad de Química, Universidad de Valencia, Dr. Moliner 50, 46100, Burjasot, Valencia, Spain
| |
Collapse
|
2
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Bubnov MP, Teplova IA, Baranov E, Fukin G. Two-dimensional coordination polymer formed due to the unusual coordination of C O group in bis-dioxolene manganese complex. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Trofimova OY, Ershova IV, Maleeva AV, Yakushev IA, Dorovatovskii PV, Aisin RR, Piskunov AV. Metal–Organic Frameworks of Magnesium Based on 2,5-Dihydroxy-3,6-di-tert-butyl-para-benzoquinone. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421090086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Meshcheryakova IN, Trofimova OY, Druzhkov NO, Pashanova KI, Yakushev IA, Dorovatovskii PV, Khrizanforov MN, Budnikova YG, Aisin RR, Piskunov AV. Magnesium and Nickel Complexes with Bis(p-iminoquinone) Redox-Active Ligand. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421050043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Poorly soluble in the most part of organic solvents dimeric complexes $${\text{M}}{{{\text{g}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF (I) and $${\text{N}}{{{\text{i}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF (II) (L is 4,4'-(1,4-phenylenebis(azanylylidene))bis(3,6-di-tert-butyl-2-hydroxycyclohexa-2,5-dien-1-one dianion)) are synthesized by the reactions of magnesium and nickel acetates with the ditopic redox-active ligand of the hydroxy-para-iminoquinone type in a DMF solution. The molecular and crystal structures of the synthesized compounds are determined by X-ray diffraction analysis (CIF files CCDC nos. 2045665 (I) and 2045666 (II·3DMF)). The thermal stability is studied by thermogravimetry. The redox-active character of the organic bridging ligand in the dimeric complexes $${\text{M}}{{{\text{g}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF and $${\text{N}}{{{\text{i}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF is confirmed by the data of solid-phase electrochemistry.
Collapse
|
6
|
Yoshino H, Tomokage N, Mishima A, Le Ouay B, Ohtani R, Kosaka W, Miyasaka H, Ohba M. Guest-selective and reversible magnetic phase switching in a pseudo-pillared-layer porous magnet. Chem Commun (Camb) 2021; 57:5211-5214. [PMID: 33908476 DOI: 10.1039/d1cc01526e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel porous magnet consisting of cationic two-dimensional (2-D) layers extended by FeIII-CN-NiII linkages and pseudo-pillar dianions was synthesized. The size-selective guest adsorption behaviour of water and methanol molecules originates from the narrow bottle-neck-type pores in the flexible pseudo-pillared-layer structure, which results in the switching of the magnetic phases from antiferromagnetic to ferromagnetic, involving significant changes in the interlayer distance.
Collapse
Affiliation(s)
- Haruka Yoshino
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Narumi Tomokage
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Mishima
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Benjamin Le Ouay
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Masaaki Ohba
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Trofimova OY, Maleeva AV, Ershova IV, Cherkasov AV, Fukin GK, Aysin RR, Kovalenko KA, Piskunov AV. Heteroleptic La III Anilate/Dicarboxylate Based Neutral 3D-Coordination Polymers. Molecules 2021; 26:2486. [PMID: 33923226 PMCID: PMC8123117 DOI: 10.3390/molecules26092486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Three new 3D metal-organic frameworks of lanthanum based on mixed anionic ligands, [(La2(pQ)2(BDC)4)·4DMF]n, [(La2(pQ)2(DHBDC)4)·4DMF]n, [(La2(CA)2(BDC)4)·4DMF]n (pQ-dianion of 2,5-dihydroxy-3,6-di-tert-butyl-para-quinone, CA-dianion of chloranilic acid, BDC-1,4-benzenedicarboxylate, DHBDC-2,5-dihydroxy-1,4-benzenedicarboxylate and DMF-N,N'-dimethylformamide), were synthesized using solvothermal methodology. Coordination polymers demonstrate the rare xah or 4,6T187 topology of a 3D framework. The homoleptic 2D-coordination polymer [(La2(pQ)3)·4DMF]n was obtained as a by-product in the course of synthetic procedure optimization. The thermal stability, spectral characteristics and porosity of coordination polymers were investigated.
Collapse
Affiliation(s)
- Olesya Y. Trofimova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Arina V. Maleeva
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Irina V. Ershova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Rinat R. Aysin
- A. N. Nesmeyanov Institute of Organometallic Chemistry of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia;
| | - Konstantin A. Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave., 3, 630090 Novosibirsk, Russia;
| | - Alexandr V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| |
Collapse
|
8
|
Liu CM, Hao X. Magnetic relaxation in two chain-like Zn2Dy2 Schiff base coordination polymers bridged by tetraoxolene and its one-electron reduced radical. NEW J CHEM 2021. [DOI: 10.1039/d1nj04299h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two chain-like Zn–Dy anilate radical coordination polymers with Schiff base ligands show magnetic relaxation behaviors.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Abstract
Metal-organic frameworks represent the ultimate chemical platform on which to develop a new generation of designer magnets. In contrast to the inorganic solids that have dominated permanent magnet technology for decades, metal-organic frameworks offer numerous advantages, most notably the nearly infinite chemical space through which to synthesize predesigned and tunable structures with controllable properties. Moreover, the presence of a rigid, crystalline structure based on organic linkers enables the potential for permanent porosity and postsynthetic chemical modification of the inorganic and organic components. Despite these attributes, the realization of metal-organic magnets with high ordering temperatures represents a formidable challenge, owing largely to the typically weak magnetic exchange coupling mediated through organic linkers. Nevertheless, recent years have seen a number of exciting advances involving frameworks based on a wide range of metal ions and organic linkers. This review provides a survey of structurally characterized metal-organic frameworks that have been shown to exhibit magnetic order. Section 1 outlines the need for new magnets and the potential role of metal-organic frameworks toward that end, and it briefly introduces the classes of magnets and the experimental methods used to characterize them. Section 2 describes early milestones and key advances in metal-organic magnet research that laid the foundation for structurally characterized metal-organic framework magnets. Sections 3 and 4 then outline the literature of metal-organic framework magnets based on diamagnetic and radical organic linkers, respectively. Finally, Section 5 concludes with some potential strategies for increasing the ordering temperatures of metal-organic framework magnets while maintaining structural integrity and additional function.
Collapse
Affiliation(s)
| | - T David Harris
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Kharitonov AD, Trofimova OY, Meshcheryakova IN, Fukin GK, Khrizanforov MN, Budnikova YH, Bogomyakov AS, Aysin RR, Kovalenko KA, Piskunov AV. 2D-metal–organic coordination polymers of lanthanides (La( iii), Pr( iii) and Nd( iii)) with redox-active dioxolene bridging ligands. CrystEngComm 2020. [DOI: 10.1039/d0ce00767f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2D-coordination redox-active networks bearingt-Bu-substituted anilic bridged ligands and lanthanide ions were synthesized and characterized.
Collapse
Affiliation(s)
- Alexandr D. Kharitonov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Olesya Y. Trofimova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Irina N. Meshcheryakova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Mikhail N. Khrizanforov
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Yulia H. Budnikova
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Artem S. Bogomyakov
- International Tomography Center SB RAS
- Novosibirsk
- Novosibirsk
- Russian Federation
| | - Rinat R. Aysin
- A.N. Nesmeyanov Institute of Organometallic Chemistry of Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Konstantin A. Kovalenko
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russian Federation
| | - Alexandr V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| |
Collapse
|