1
|
Progress in Metal-Organic Framework Catalysts for Selective Catalytic Reduction of NOx: A Mini-Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrogen oxides released from the combustion of fossil fuels are one of the main air pollutants. Selective catalytic reduction technology is the most widely used nitrogen oxide removal technology in the industry. With the development of nanomaterials science, more and more novel nanomaterials are being used as catalysts for the selective reduction of nitrogen oxides. In recent years, metal-organic frameworks (MOFs), with large specific surface areas and abundant acid and metal sites, have been extensively studied in the selective catalytic reduction of nitrogen oxides. This review summarizes recent progress in monometallic MOFs, bimetallic MOFs, and MOF-derived catalysts for the selective catalytic reduction of nitrogen oxides and compares the reaction mechanisms of different catalysts. This article also suggests the advantages and disadvantages of MOF-based catalysts compared with traditional catalysts and points out promising research directions in this field.
Collapse
|
2
|
Ko S, Tang X, Gao F, Wang C, Liu H, Liu Y. Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: Influence of thermal treatment temperature. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Ko S, Gao F, Yao X, Yi H, Tang X, Wang C, Liu H, Luo N, Qi Z. Synthesis of metal–organic frameworks (MOFs) and their application in the selective catalytic reduction of NO x with NH 3. NEW J CHEM 2022. [DOI: 10.1039/d2nj02358j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the synthesis, applications for the NH3-SCR and methods for strengthening the water resistance and thermal stability of MOF catalysts.
Collapse
Affiliation(s)
- Songjin Ko
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Chemistry, Pyongyang University of Architecture, Pyongyang, DPR of Korea
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Yao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengzhi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hengheng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiying Qi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
MnOx Supported on Hierarchical SAPO-34 for the Low-Temperature Selective Catalytic Reduction of NO with NH3: Catalytic Activity and SO2 Resistance. Catalysts 2021. [DOI: 10.3390/catal11030314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ethanol dispersion method was employed to synthesize a series of MnOx/SAPO-34 catalysts using SAPO-34 with the hierarchical pore structure as the zeolite carrier, which were prepared by facile acid treatment with citric acid. Physicochemical properties of catalysts were characterized by XRD, XPS, BET, TEM, NH3-TPD, SEM, FT-IR, Py-IR, H2-TRP and TG/DTG. NH3-SCR performances of the hierarchical MnOx/SAPO-34 catalysts were evaluated at low temperatures. Results show that citric acid etching solution at a concentration of 0.1 mol/L yielded a hierarchical MnOx/SAPO-34-0.1 catalyst with ca.15 wt.% Mn loading, exhibiting optimal catalytic activity and SO2 tolerance at low temperatures. Almost 100% NO conversion and over 90% N2 selectivity at 120 °C under a gas hourly space velocity (GHSV) of 40,000 h−1 could be obtained over this sample. Furthermore, the NO conversion was still higher than 65% when 100 ppm SO2 was introduced to the reaction gas for 4 h. These could be primarily attributed to the large specific surface area, high surface acidity concentration and abundant chemisorbed oxygen species provided by the hierarchical pore structure, which could also increase the mass transfer of the reaction gas. This finding suggests that the NH3-SCR activity and SO2 poisoning tolerance of hierarchical MnOx/SAPO-34 catalysts at low temperatures can be improved by controlling the morphology of the catalysts, which might supply a rational strategy for the design and synthesis of Mn-based SCR catalysts.
Collapse
|
5
|
Guo Y, Yu Q, Fang H, Wang H, Han J, Ge Q, Zhu X. Ce–UiO-66 Derived CeO2 Octahedron Catalysts for Efficient Ketonization of Propionic Acid. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yonghua Guo
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiang Yu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Huasu Fang
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hua Wang
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinyu Han
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Xinli Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|