1
|
Chang CC, Chen MT, Huang TL, Chen CT. Tunable zinc benzamidinate complexes: coordination modes and catalytic activity in the ring-opening polymerization of L-lactide. Dalton Trans 2024; 53:7229-7238. [PMID: 38584516 DOI: 10.1039/d4dt00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Seven asymmetric zinc benzamidinate complexes featuring or lacking side-arm functionalities were synthesized. Using equimolar zinc reagent produced distinct dinuclear motifs [(C6H5-C = NC6H5)ZnEt]2 (R = tBu, 1; (CH2)2OMe, 2; (CH2)2NMe2, 3). Half the zinc reagent yielded dinuclear [(C6H5-C = NC6H5)2Zn]2 (R = tBu, 4) or mononuclear zinc bis(chelate) complexes (R = (CH2)2OMe, 5; (CH2)2NMe2, 6; CH2Py, 7). Molecular structures of 1-4 and 7 were determined via single-crystal X-ray diffraction. Altering benzamidinate substituents modifies both coordination modes and catalytic activities in ring-opening polymerization of L-lactide. Specifically, complex 7 exhibits enhanced catalytic activity at 25 °C using 100 equivalents of L-lactide with a turnover frequency of 1820 h-1.
Collapse
Affiliation(s)
- Chen-Chieh Chang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
| | - Ming-Tsz Chen
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan, Republic of China.
| | - Tzu-Lun Huang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
| | - Chi-Tien Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China.
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
2
|
Yolsal U, Shaw PJ, Lowy PA, Chambenahalli R, Garden JA. Exploiting Multimetallic Cooperativity in the Ring-Opening Polymerization of Cyclic Esters and Ethers. ACS Catal 2024; 14:1050-1074. [PMID: 38269042 PMCID: PMC10804381 DOI: 10.1021/acscatal.3c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
The use of multimetallic complexes is a rapidly advancing route to enhance catalyst performance in the ring-opening polymerization of cyclic esters and ethers. Multimetallic catalysts often outperform their monometallic analogues in terms of reactivity and/or polymerization control, and these improvements are typically attributed to "multimetallic cooperativity". Yet the origins of multimetallic cooperativity often remain unclear. This review explores the key factors underpinning multimetallic cooperativity, including metal-metal distances, the flexibility, electronics and conformation of the ligand framework, and the coordination environment of the metal centers. Emerging trends are discussed to provide insights into why cooperativity occurs and how to harness cooperativity for the development of highly efficient multimetallic catalysts.
Collapse
Affiliation(s)
- Utku Yolsal
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter J. Shaw
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Phoebe A. Lowy
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Raju Chambenahalli
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Jennifer A. Garden
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
3
|
Xing T, Frese JWA, Derbyshire M, Glenister MA, Elsegood MRJ, Redshaw C. Trinuclear zinc calix[4]arenes: synthesis, structure, and ring opening polymerization studies. Dalton Trans 2022; 51:11776-11786. [PMID: 35860977 DOI: 10.1039/d2dt01496c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trinuclear zinc calix[4]arene complexes [Zn3(O2CCH3)2(L(O)2(OMe)2)2·xMeCN (x = 7.5, 1; x = 6, 1'), [Zn3(O2CCH3)2(L(O)2(OnPr)2)2·5MeCN (2·5MeCN), [Zn3(OEt)2(L(O)2(OMe)2)2]·4MeCN (3·4MeCN), [Zn3(OEt)2(L(Opentyl)2)2]·4.5MeCN (4·4.5MeCN) and [Zn3(OH)2(L(O)2(On-pentyl)2]·8MeCN (5·8MeCN) have been isolated from reaction of [(ZnEt)2(L(O)2(OR)2)2] (L(OH)2(OR)2 = 1,3-dialkoxy-4-tert-butylcalix[4]arene; R = methyl, n-propyl or pentyl) and the reagents acetic acid, ethanol, and presumed adventitious water, respectively. Attempts to make 5via a controlled hydrolysis led only to the isolation of polymorphs of (L(OH)2(Opentyl)2·MeCN. Reaction of [Zn(C6F5)2] with L(OH)2(Opentyl)2, in the presence of K2CO3, led to the isolation of the complex [Zn6(L(On-pentyl))2(OH)3(C6F5)3(NCMe)3]·3MeCN (6·3MeCN). The molecular structures of 1-6 reveal they all contain a near linear (163 to 179°) Zn3 motif. In 1-5, a central tetrahedral Zn centre is flanked by trigonal bipyramidal Zn centres, whilst in 6, for the linear Zn3 unit, a central distorted octahedral zinc centre is flanked by trigonal planar and a tetrahedral zinc centres. Screening for the ring opening polymerization (ROP) of ε-caprolactone at 90 °C revealed that they are active with moderate to good conversion affording low to medium molecular weight products with at least two series of ions. For comparative studies, the trinuclear aminebis(phenolate) complex [Zn3(Oi-Pr)2L/] (L/ = n-propylamine-N,N-bis(2-methylene-4,6-di-tert-butylphenolate) I was prepared. Kinetics revealed the rate order I > 4 > 6 ≈ 2 ≈ 1 > 3.
Collapse
Affiliation(s)
- Tian Xing
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Josef W A Frese
- Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Max Derbyshire
- Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mollie A Glenister
- Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mark R J Elsegood
- Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
4
|
Hu M, Song X, Wang F, Zhang W, Ma W, Han F. Ring-opening polymerization of rac-lactide catalyzed by magnesium and zinc complexes supported by an NNO ligand. NEW J CHEM 2022. [DOI: 10.1039/d1nj05157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of magnesium and zinc complexes containing unsymmetric tertiary amine ligands and their catalytic properties for polymerization of rac-lactide.
Collapse
Affiliation(s)
- Minggang Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, China
| | - Xinfeng Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Fugui Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Wenhui Ma
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Fuzhong Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
5
|
Lazareva NF, Zelbst EA. New tridentate ligands based on 2-tert-butyl-4-methylphenol: synthesis and structure. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide. Catalysts 2021. [DOI: 10.3390/catal11050551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five novel air- and moisture-stable polymetallic Ti and Zr amino acid-derived amine bis(phenolate) (ABP) complexes were synthesised and fully characterised, including X-ray crystallographic studies. The reaction of the ABP proligands with Ti or Zr alkoxides has resulted in the formation of polymetallic aggregates of different nuclearity. The steric bulk on the pendant arm of the ligand was found to play a critical role in establishing the nuclearity of the aggregated complex. Sterically, less-demanding groups, such as H or Me, facilitated the formation of tetrametallic Ti clusters, bridged by carboxylate groups, while increased steric bulk (tBu) led to the formation of binuclear μ-oxo-bridged species. The isolated complexes were employed as catalysts for the ring opening polymerisation (ROP) of rac-lactide. Overall, the Ti catalysts were all active with the smaller, bimetallic Ti aggregates exhibiting relatively faster rates. A monometallic, bis(ABP) Zr complex was found to exert remarkable ROP activity, albeit with limited control over the tacticity and molecular weight distribution of the polymer. A further oxo-bridged Zr cluster was shown to display a previously unprecedented trimetallic structure and achieved a moderate rate in the ROP of rac-lactide.
Collapse
|
7
|
Soobrattee S, Zhai X, Nyamayaro K, Diaz C, Kelley P, Ebrahimi T, Mehrkhodavandi P. Dinucleating Amino-Phenolate Platform for Zinc Catalysts: Impact on Lactide Polymerization. Inorg Chem 2020; 59:5546-5557. [PMID: 32223228 DOI: 10.1021/acs.inorgchem.0c00250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report imine- and amine-based dinucleating ligands bearing a bisphenol backbone and explore their coordination chemistry with zinc to form zinc alkyl, alkoxide, acetate, and amide complexes. Full characterization of the complexes shows that this ligand framework can support dinuclear and trinuclear complexes. We explore the reactivity of the zinc alkyl and alkoxide complexes as catalysts for the ring opening polymerization of lactide and compared this reactivity to analogous mononuclear complexes. We show that 1) The amine-based complexes are more reactive than the imine-based analogues; 2) The trinuclear zinc alkyl species show unusual control and reproducibility for lactide polymerization; and 3) The extent of bimetallic cooperation is hampered by the ability of the ligand framework to form trinuclear clusters.
Collapse
Affiliation(s)
- Shazia Soobrattee
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xiaofang Zhai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kudzanai Nyamayaro
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Carlos Diaz
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Kelley
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tannaz Ebrahimi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
8
|
Synthesis of zinc complexes bearing pyridine derivatives and their application of ε-caprolactone and L-Lactide polymerization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Devaine-Pressing K, Oldenburg FJ, Menzel JP, Springer M, Dawe LN, Kozak CM. Lithium, sodium, potassium and calcium amine-bis(phenolate) complexes in the ring-opening polymerization of rac-lactide. Dalton Trans 2020; 49:1531-1544. [PMID: 31930245 DOI: 10.1039/c9dt04561a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compounds of Li, Na, K and Ca of a tetradentate amino-bis(phenolato) ligand were prepared. Bimetallic compounds formulated as M2[L](THF)n (where M = Na, n = 1 (1·THF) or Li, n = 1 (2·THF)) were synthesized via the reaction of H2[L] (where [L] = 2-pyridylmethylamino-N,N-bis(2-methylene-4-methoxy-6-tert-butylphenolato) with sodium hydride or n-butyllithium, respectively, in THF. Monometallic complexes MH[L](THF)n (where M = Na, n = 1 (3·THF), Li, n = 0 (4) and K, n = 0 (5)) were obtained by reaction of H2[L] with MN(SiMe3)2 where M = Na, Li, or K. Calcium complex Ca[L](THF) (6·THF) was synthesized in two ways; reaction of Na2[L] with calcium iodide in THF, and reaction of Ca[N(SiMe3)2]2 with H2[L] in toluene. Compounds 1-6 exhibit activity for rac-lactide polymerization under melt and solution conditions. Moderate control of polymer molecular weights was achieved in toluene, whereas polydisperse polymer was obtained under solvent free conditions. MALDI-TOF MS analysis of the polymer end groups revealed a predominantly cyclic nature for the polylactides.
Collapse
Affiliation(s)
- Katalin Devaine-Pressing
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X7, Canada.
| | - Fabio J Oldenburg
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X7, Canada.
| | - Jan P Menzel
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X7, Canada.
| | - Maximilian Springer
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X7, Canada.
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Christopher M Kozak
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1B 3X7, Canada.
| |
Collapse
|