1
|
Han J, Kim S, Kang D, Lee SH, Cho AY, Lee H, Kwon JH, Shin Y, Kim YP, Lee J. Near-Infrared Long-Lived Luminescent Nanoparticle-Based Time-Gated Imaging for Background-Free Detection of Avian Influenza Virus. ACS Sens 2025; 10:1312-1320. [PMID: 39953996 DOI: 10.1021/acssensors.4c03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Near-infrared (NIR)-to-NIR upconversion nanoparticles (UCNPs) are promising materials for biomedical imaging and sensing applications. However, UCNPs with long lifetimes continue to face the limitation that they are usually accompanied by weak luminescence intensity, resulting in difficulties in achieving high-resolution and sensitive time-gated imaging. To overcome this limitation, we have developed NIR long-lifetime luminescent nanoparticles (NLL NPs) with strong 800 nm emission by adding a photosensitizing shell and with a prolonged lifetime by lowering the activator concentration. NLL NP-based time-gated imaging overcomes the inherent limitations of steady-state imaging by providing higher signal-to-noise ratios and more robust signal intensities. When integrated into a lateral flow immunoassay (LFA) for the detection of avian influenza viruses, NLL NP-based time-gated imaging demonstrates a 32-fold lower limit of detection compared to conventional optimal 800 nm emitting nanoparticles. Furthermore, the high accuracy of the NLL NP-based LFA is confirmed through clinical validations using 65 samples, achieving a sensitivity and specificity of 100% and an area under the curve of 1.000. These results demonstrate the potential of NLL NP-based time-gated imaging as a powerful tool for the highly sensitive and accurate detection of avian influenza viruses in complex clinical samples.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Dongkyu Kang
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Heesu Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung-Hoon Kwon
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Zhang L, Zhou S, Meng J, Zhang Y, Zhang J, Ma Q, Qin L, Luo M. The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba 3WO 5Cl 2 for W-LEDs Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:311. [PMID: 39997872 PMCID: PMC11858636 DOI: 10.3390/nano15040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The self-activated halotungstate Ba3WO5Cl2 was successfully synthesized using a high-temperature solid-state method. X-ray diffraction analysis (XRD) confirmed the formation of a single-phase compound with a monoclinic crystal structure, ensuring the material's purity and structural integrity. The luminescence properties of Ba3WO5Cl2 were thoroughly investigated using both optical and laser-excitation spectroscopy. The photoluminescent excitation (PLE) and emission (PL) spectra, together with the corresponding decay curves, were recorded across a broad temperature range, from 10 K to 480 K. The charge transfer band (CTB) of the [WO5Cl] octahedron was clearly identified in both the PL and the PLE spectra under ultraviolet light excitation, indicating efficient energy transfer within the material's structure. A strong blue emission could be detected around 450 nm, which is characteristic of the material's luminescent properties. However, this emission exhibited thermal quenching as the temperature increased, a common phenomenon where the luminescence intensity diminishes due to thermal effects. To better understand the thermal quenching behavior, variations in luminescence intensity and decay time were analyzed using a straightforward thermal quenching model. This comprehensive study of Ba3WO5Cl2 luminescent properties not only deepens the understanding of its photophysical behavior but also contributes to the development of novel materials with tailored optical properties for specific technological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Man Luo
- School of Microelectronics and School of Integrated Circuits (Jiangsu Key Laboratory of Semi. Dev. & IC Design, Package and Test), Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Zhang M, Wang B, Cai Y, Jin D, Zhou J. Thermally Prolonged NIR-II Luminescence Lifetimes by Cross-Relaxation. NANO LETTERS 2024. [PMID: 38602906 DOI: 10.1021/acs.nanolett.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Temperature regulates nonradiative processes in luminescent materials, fundamental to luminescence nanothermometry. However, elevated temperatures often suppress the radiative process, limiting the sensitivity of thermometers. Here, we introduce an approach to populating the excited state of lanthanides at elevated temperatures, resulting in a sizable lifetime lengthening and intensity increase of the near-infrared (NIR)-II emission. The key is to create a five-energy-level system and use a pair of lanthanides to leverage the cross-relaxation process. We observed the lifetime of NIR-II emission of Er3+ has been remarkably increased from 3.85 to 7.54 ms by codoping only 0.5 mol % Ce3+ at 20 °C and further increased to 7.80 ms when increasing the temperature to 40 °C. Moreover, this concept is universal across four ion pairs and remains stable within aqueous nanoparticles. Our findings emphasize the need to design energy transfer systems that overcome the constraint of thermal quenching, enabling efficient imaging and sensing.
Collapse
Affiliation(s)
- Maoxin Zhang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Baokai Wang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yangjian Cai
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
4
|
Wang M, Hu C, Su Q. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. BIOSENSORS 2022; 12:131. [PMID: 35200391 PMCID: PMC8869906 DOI: 10.3390/bios12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 05/16/2023]
Abstract
Lanthanide-doped nanoparticles possess numerous advantages including tunable luminescence emission, narrow peak width and excellent optical and thermal stability, especially concerning the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background fluorescence interference and biological tissue depth. This review presents the recent advances in approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with the introduction of the strategies for regulating the lifetime by modulating the core-shell structure, adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a fluorescence resonance energy transfer pathway and changing temperature. We then summarize the applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and protease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and challenges of the lanthanide lifetime regulation for fundamental research and practical applications are also discussed.
Collapse
Affiliation(s)
- Mingkai Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Nano-Crystallization of Ln-Fluoride Crystals in Glass-Ceramics via Inducing of Yb 3+ for Efficient Near-Infrared Upconversion Luminescence of Tm 3. NANOMATERIALS 2021; 11:nano11041033. [PMID: 33919614 PMCID: PMC8072567 DOI: 10.3390/nano11041033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Transparent glass-ceramic composites embedded with Ln-fluoride nanocrystals are prepared in this work to enhance the upconversion luminescence of Tm3+. The crystalline phases, microstructures, and photoluminescence properties of samples are carefully investigated. KYb3F10 nanocrystals are proved to controllably precipitate in the glass-ceramics via the inducing of Yb3+ when the doping concentration varies from 0.5 to 1.5 mol%. Pure near-infrared upconversion emissions are observed and the emission intensities are enhanced in the glass-ceramics as compared to in the precursor glass due to the incorporation of Tm3+ into the KYb3F10 crystal structures via substitutions for Yb3+. Furthermore, KYb2F7 crystals are also nano-crystallized in the glass-ceramics when the Yb3+ concentration exceeds 2.0 mol%. The upconversion emission intensity of Tm3+ is further enhanced by seven times as Tm3+ enters the lattice sites of pure KYb2F7 nanocrystals. The designed glass ceramics provide efficient gain materials for optical applications in the biological transmission window. Moreover, the controllable nano-crystallization strategy induced by Yb3+ opens a new way for engineering a wide range of functional nanomaterials with effective incorporation of Ln3+ ions into fluoride crystal structures.
Collapse
|
6
|
Zairov RR, Dovzhenko AP, Sapunova AS, Voloshina AD, Sarkanich KA, Daminova AG, Nizameev IR, Lapaev DV, Sudakova SN, Podyachev SN, Petrov KA, Vomiero A, Mustafina AR. Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303-313 K range. Sci Rep 2020; 10:20541. [PMID: 33239623 PMCID: PMC7689473 DOI: 10.1038/s41598-020-77512-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
The work introduces hydrophilic PSS-[Tb2(TCAn)2] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb2(TCAn)2] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim substituents: unsubstituted TCA1, tert-buthyl-substituted TCA2, di- and tetra-brominated TCA3 and TCA4) with the use of polystyrenesulfonate (PSS) as stabilizer. The temperature responsive luminescence behavior of PSS-[Tb2(TCAn)2] within 293–333 K range in water is modulated by reversible changes derived from the back energy transfer from metal to ligand (M* → T1) correlating with the energy gap between the triplet levels of ligands and resonant 5D4 level of Tb3+ ion. The lowering of the triplet level (T1) energies going from TCA1 and TCA2 to their brominated counterparts TCA3 and TCA4 facilitates the back energy transfer. The highest ever reported temperature sensitivity for intracellular temperature nanosensors is obtained for PSS-[Tb2(TCA4)2] (SI = 5.25% K−1), while PSS-[Tb2(TCA3)2] is characterized by a moderate one (SI = 2.96% K−1). The insignificant release of toxic Tb3+ ions from PSS-[Tb2(TCAn)2] within heating/cooling cycle and the low cytotoxicity of the colloids point to their applicability in intracellular temperature monitoring. The cell internalization of PSS-[Tb2(TCAn)2] (n = 3, 4) marks the cell cytoplasm by green Tb3+-luminescence, which exhibits detectable quenching when the cell samples are heated from 303 to 313 K. The colloids hold unprecedented potential for in vivo intracellular monitoring of temperature changes induced by hyperthermia or pathological processes in narrow range of physiological temperatures.
Collapse
Affiliation(s)
- Rustem R Zairov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088.
| | - Alexey P Dovzhenko
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan, Russian Federation, 420008
| | - Anastasiia S Sapunova
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| | - Alexandra D Voloshina
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| | - Kirill A Sarkanich
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan, Russian Federation, 420008
| | - Amina G Daminova
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., Kazan, Russian Federation, 420008
| | - Irek R Nizameev
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| | - Dmitry V Lapaev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky tract, 10/7, Kazan, Russian Federation, 420029
| | - Svetlana N Sudakova
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| | - Sergey N Podyachev
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| | - Konstantin A Petrov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| | - Alberto Vomiero
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87, Luleå, Sweden. .,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy.
| | - Asiya R Mustafina
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 8 Arbuzov str., Kazan, Russian Federation, 420088
| |
Collapse
|