1
|
Kisten P, Vincendeau S, Manoury E, Lynam JM, Slattery JM, Duckett SB, Lledós A, Poli R. Understanding ketone hydrogenation catalysis with anionic iridium(iii) complexes: the crucial role of counterion and solvation. Chem Sci 2024; 15:20478-20492. [PMID: 39583568 PMCID: PMC11583429 DOI: 10.1039/d4sc04629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
Catalytic asymmetric hydrogenation of ketones is an important approach to prepare valuable chiral alcohols. Understanding how transition metals promote these reactions is key to the rational design of more active, selective and sustainable catalysts. A highly unusual mechanism for asymmetric hydrogenation of acetophenone catalysed by an anionic IrIII hydride system, including a strong counterion dependence on catalyst activity, is explored and rationalised here. The active catalyst, generated in situ from [IrCl(COD)]2 and a bidentate ligand (P,SR) under H2 in the presence of a strong base (M+iPrO- in isopropanol, M = Li, Na, K), is the solvated M+[Ir(H)4(P,SR)] salt (P,SR = CpFe[1,2-C5H3(PPh2)(CH2SR)], with R = iPr, Ph, Bz and Cy). Catalyst activity increases, for all R derivatives, significantly as the counterion is varied in the order Li < Na < K. For the most active K system, the addition of 18-crown-6 drastically reduces the activity. While the cation strongly affects catalyst activity, it does not significantly affect enantioselectivity. DFT calculations explored these effects in detail and showed that the solvation model used in the calculations is critical. Only a hybrid implicit/explicit solvent model including sufficient explicit solvent molecules to properly describe the first solvation shell of the cation is able to reproduce the experimental observations. This model revealed the fundamental importance of the alkali-metal cation coordination sphere in understanding the counterion effects. The turnover-determining states in the catalytic cycle are those involved in outer-sphere hydride transfer to the substrate. This step leads to coordination of the alkoxide product to the alkali-metal cation, with a significant rearrangement of the coordination sphere of M, whereas there is little change in the geometrical parameters around Ir or the alkoxide. The DFT calculations also pinpointed the major enantio-discriminating interactions and rationalised the insensitivity of the enantioselectivity on the alkali metal cation placement.
Collapse
Affiliation(s)
- Paven Kisten
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4 France +33-561553003 +33-561333174
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Sandrine Vincendeau
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4 France +33-561553003 +33-561333174
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4 France +33-561553003 +33-561333174
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - John M Slattery
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Simon B Duckett
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès, Catalonia Spain
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4 France +33-561553003 +33-561333174
- Institut Universitaire de France 1, Rue Descartes, 75231 Paris Cedex 05 France
| |
Collapse
|
2
|
da Silva Alvim R, Esio Bresciani A, Alves RMB. Formic acid stability in different solvents by DFT calculations. J Mol Model 2024; 30:67. [PMID: 38345658 DOI: 10.1007/s00894-024-05849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024]
Abstract
CONTEXT New technologies have been developed toward the use of green energies. The production of formic acid (FA) from carbon dioxide (CO[Formula: see text]) hydrogenation with H[Formula: see text] is a sustainable process for H[Formula: see text] storage. However, the FA adduct stabilization is thermodynamically dependent on the type of solvent and thermodynamic conditions. The results suggest a wide range of dielectric permittivity values between the dimethyl sulfoxide (DMSO) and water solvents to stabilize the FA in the absence of base. The thermodynamics analysis and the infrared and charge density difference results show that the formation of the FA complex with H[Formula: see text]O is temperature dependent and has a major influence on aqueous solvents compared to the FA adduct with amine, in good agreement with the experiment. In these conditions, the stability thermodynamic of the FA molecule may be favorable at non-organic solvents and dielectric permittivity values closer to water. Therefore, a mixture of aqueous solvents with possible ionic composition could be used to increase the thermodynamic stability of H[Formula: see text] storage in CO[Formula: see text] conversion processes. METHODS Using the Quantum ESPRESSO package, density functional theory (DFT) calculations were performed with periodic boundary conditions, and the electronic wave functions were expanded in plane waves. For the exchange-correlation functional, we use the vdW-DF functional with the inclusion of van der Waals (vdW) forces. Electron-ion interactions are treated by the projector augmented wave (PAW) method with pseudopotentials available in the PSlibrary repository. The wave functions and the electronic densities were expanded employing accurate cut-off energies of 6.80[Formula: see text]10[Formula: see text] and 5.44[Formula: see text]10[Formula: see text] eV, respectively. The electronic density was computed from the wave functions calculated at the [Formula: see text]-point in the first Brillouin-zone. Each structural optimization was minimized according to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, with force and energy convergence criteria of 25 meV[Formula: see text]Å[Formula: see text] and 1.36 meV, respectively. The electrostatic solvation effects were performed by the [Formula: see text] package with the Self-Consistent Continuum Solvation (SCCS) approach.
Collapse
Affiliation(s)
- Raphael da Silva Alvim
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Antonio Esio Bresciani
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Rita Maria Brito Alves
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
3
|
Fey N, Lynam JM. Computational mechanistic study in organometallic catalysis: Why prediction is still a challenge. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Fey
- School of Chemistry University of Bristol, Cantock's Close Bristol UK
| | | |
Collapse
|
4
|
de Zwart FJ, Sinha V, Trincado M, Grützmacher H, de Bruin B. Computational mechanistic studies of ruthenium catalysed methanol dehydrogenation. Dalton Trans 2022; 51:3019-3026. [PMID: 35079760 PMCID: PMC8862544 DOI: 10.1039/d1dt04168a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homogeneous ruthenium catalysed methanol dehydrogenation could become a key reaction for hydrogen production in liquid fuel cells. In order to improve existing catalytic systems, mechanistic insight is paramount in directing future studies. Herein, we describe what computational mechanistic research has taught us so far about ruthenium catalysed dehydrogenation reactions. In general, two mechanistic pathways can be operative in these reactions: a metal-centered or a metal-ligand cooperative (Noyori-Morris type) minimum energy reaction pathway (MERP). Discerning between these mechanisms on the basis of computational studies has proven to be highly input dependent, and to circumvent pitfalls it is important to consider several factors, such as solvent effects, metal-ligand cooperativity, alternative geometries, and complex electronic structures of metal centres. This Frontiers article summarizes the reported computational research performed on ruthenium catalyzed dehydrogenation reactions performed in the past decade, and serves as a guide for future research.
Collapse
Affiliation(s)
- Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Vivek Sinha
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Monica Trincado
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Hansjörg Grützmacher
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Tantillo DJ, Laconsay CJ. Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1720451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review summarizes approaches and caveats in computational modeling of transition-metal-catalyzed sigmatropic rearrangements involving carbene transfer. We highlight contemporary examples of combined synthetic and theoretical investigations that showcase the synergy achievable by integrating experiment and theory.1 Introduction2 Mechanistic Models3 Theoretical Approaches and Caveats3.1 Recommended Computational Tools3.2 Choice of Functional and Basis Set3.3 Conformations and Ligand-Binding Modes3.4 Solvation4 Synergy of Experiment and Theory – Case Studies4.1 Metal-Bound or Free Ylides?4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes4.3 No Metal, Just Light4.4 How To ‘Cope’ with Nonstatistical Dynamic Effects5 Outlook
Collapse
|
6
|
Shen X, Wang W, Wang Q, Liu J, Huang F, Sun C, Yang C, Chen D. Mechanism of iron complexes catalyzed in the N-formylation of amines with CO 2 and H 2: the superior performance of N-H ligand methylated complexes. Phys Chem Chem Phys 2021; 23:16675-16689. [PMID: 34337631 DOI: 10.1039/d1cp00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CO2 hydrogenation into value-added chemicals not only offer an economically beneficial outlet but also help reduce the emission of greenhouse gases. Herein, the density functional theory (DFT) studies have been carried out on CO2 hydrogenation reaction for formamide production catalyzed by two different N-H ligand types of PNP iron catalysts. The results suggest that the whole mechanistic pathway has three parts: (i) precatalyst activation, (ii) hydrogenation of CO2 to generate formic acid (HCOOH), and (iii) amine thermal condensation to formamide with HCOOH. The lower turnover number (TON) of a bifunctional catalyst system in hydrogenating CO2 may attribute to the facile side-reaction between CO2 and bifunctional catalyst, which inhibits the generation of active species. Regarding the bifunctional catalyst system addressed in this work, we proposed a ligand participated mechanism due to the low pKa of the ligand N-H functional in the associated stage in the catalytic cycle. Remarkably, catalysts without the N-H ligand exhibit the significant transfer hydrogenation through the metal centered mechanism. Due to the excellent catalytic nature of the N-H ligand methylated catalyst, the N-H bond was not necessary for stabilizing the intermediate. Therefore, we confirmed that N-H ligand methylated catalysts allow for an efficient CO2 hydrogenation reaction compared to the bifunctional catalysts. Furthermore, the influence of Lewis acid and strong base on catalytic N-formylation were considered. Both significantly impact the catalytic performance. Moreover, the catalytic activity of PNMeP-based Mn, Fe and Ru complexes for CO2 hydrogenation to formamides was explored as well. The energetic span of Fe and Mn catalysts are much closer to the precious metal Ru, which indicates that such non-precious metal catalysts have potentially valuable applications.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Govindarajan N, Sinha V, Trincado M, Grützmacher H, Meijer EJ, Bruin B. An In‐Depth Mechanistic Study of Ru‐Catalysed Aqueous Methanol Dehydrogenation and Prospects for Future Catalyst Design. ChemCatChem 2020. [DOI: 10.1002/cctc.202000057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nitish Govindarajan
- Van ‘t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling Science Park 904 1098 XH Amsterdam The Netherlands
| | - Vivek Sinha
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Van ‘t Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam The Netherlands
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences ETH Zürich Zürich CH-8093 Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Zürich CH-8093 Switzerland
| | - Evert Jan Meijer
- Van ‘t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Van ‘t Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
8
|
Van Vaerenbergh B, Lauwaert J, Vermeir P, Thybaut JW, De Clercq J. Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00197j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A walk-through of nanoparticle–reactant/product, nanoparticle–support and support–reactant/product interaction effects on the catalytic performance of heterogeneous palladium catalysts in liquid-phase reactions.
Collapse
Affiliation(s)
- Beau Van Vaerenbergh
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| | - Jeroen Lauwaert
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| | - Pieter Vermeir
- Ghent University
- Faculty of Bioscience Engineering
- Department of Green Chemistry and Technology
- Laboratory for Chemical Analyses (LCA)
- Ghent
| | - Joris W. Thybaut
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Laboratory for Chemical Technology (LCT)
| | - Jeriffa De Clercq
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| |
Collapse
|
9
|
|