1
|
Chen XW, Gu LQ, Zeng XY, Sun XY, Ouyang JM. Sulfated Pelvetia siliquosa Polysaccharides Inhibit CaOx Stone Formation by Inhibiting Calcium Oxalate Crystallization, Cellular Inflammation, and Crystal Adhesion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1542-1562. [PMID: 39741421 DOI: 10.1021/acs.jafc.4c07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Hyperoxaluria can easily induce calcium oxalate (CaOx) crystals and cause cell damage, thereby increasing the risk of kidney stone formation. In this study, three sulfated Pelvetia siliquosa polysaccharides (PSPs) were obtained by the sulfur trioxide-pyridine method. The antioxidant activity of PSPs and the inhibitory effects of PSPs on CaOx crystallization, cellular oxidative damage, and cellular inflammation were explored in vitro, and PSPs were used to treat hyperoxaluria-induced crystallization model mice in order to validate the stone-preventive effect of PSPs in vivo. PSPs can inhibit CaOx crystal formation, as well as reduce reactive oxygen species (ROS) levels through their own antioxidant properties and up-regulation of antioxidant enzyme (SOD and CAT) expression, which in turn reduces the release of lactate dehydrogenase (LDH) and malondialdehyde (MDA), improves lysosomal integrity, cellular morphology, and cytoskeleton, inhibits the decrease of mitochondrial membrane potential, reduces adhesion protein (CD44 and OPN) expression, alleviates cellular inflammatory factor (IL-6, TNF-α, and IL-1β) levels, and inhibits apoptosis. PSP3, which has the highest degree of sulfation, had the best protection capacity. PSP3 also showed good antistone ability in mice, and it may be a potential drug for kidney stone prevention.
Collapse
Affiliation(s)
- Xue-Wu Chen
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Liu-Qing Gu
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xin-Yu Zeng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Wang H, Luan F, Shi Y, Yan S, Xin B, Zhang X, Guo D, Sun J, Zou J. Extraction, structural features, and pharmacological effects of the polysaccharides from Porphyra yezoensis: A review. Int J Biol Macromol 2024; 279:134745. [PMID: 39147347 DOI: 10.1016/j.ijbiomac.2024.134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Porphyra yezoensis, an important medicinal seaweed extensively cultivated and consumed in China, Japan, and South Korea, is traditionally considered a precious healthy food and food additive. Published studies showed that the polysaccharides are major bioactive macromolecules from P. yezoensis with great potential for the development of nutraceuticals and functional foods. As an important component of P. yezoensis, P. yezoensis polysaccharide (PYP) is mainly extracted by hot water extraction, ultrasonic-assisted extraction, and microwave-assisted extraction methods. Subsequently obtained by decolorization, deproteinization, removal of other small molecules, and separation on various chromatographic columns. The main structural components of PYP were (1 → 3)-linked β-D-galactose and (1 → 4)-linked 3,6-anhydro-α-L-galactose. Accumulating evidence has revealed that PYP has diverse biological activities, such as antioxidant, suppressing kidney stones, immunomodulatory, etc. This review systematically summarizes the recent preparation progress, chemical structures, bioactivities, and the underlying mechanisms of PYP. Information from this review provides insights into the further development of PYP as therapeutic agents and functional foods. Although there have been extensive studies on PYP, there are gaps in establishing quality standard, toxicological research, clinical application and other aspects. To enhance the utility of P. yezoensis, it is necessary to strengthen the research on these aspects.
Collapse
Affiliation(s)
- He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Yang X, Liu Y, Zhu X, Chen P, Xie X, Xu T, Zhang X, Zhao Y. Vascular, valvular and kidney calcification manifested in mouse models of adenine-induced chronic kidney disease. Ren Fail 2023; 45:2228920. [PMID: 37369635 DOI: 10.1080/0886022x.2023.2228920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ectopic calcification (EC) involves multiple organ systems in chronic kidney disease (CKD). Previous CKD-animal models primarily focused on a certain histological abnormality but did not show the correlation with calcified development among various tissues. This study compared calcified deposition in various tissues during CKD progression in mice. METHODS Male 8-week-old C57BL/6J mice were randomly allocated to the seven groups: a basic, adenine, high-phosphorus, or adenine and high-phosphorus diet for 12-16 weeks (Ctl16, A12, P16, or AP16, respectively); an adenine diet for 4-6 weeks; and a high-phosphorus or adenine and high-phosphorus diet for 10-12 weeks (A6 + P10, A4 + P12, or A4 + AP12, respectively). RESULTS Compared to the Ctl16 mice, the P16 mice only displayed a slight abnormality in serum calcium and phosphorus; the A12 mice had the most serious kidney impairment; the A4 + P12 and A6 + P10 mice had similar conditions of CKD, mineral abnormalities, and mild calcification in the kidney and aortic valves; the A4 + AP12 and AP16 groups had severe kidney impairment, mineral abnormalities and calcification in the kidneys, aortic valves and aortas. Furthermore, calcium-phosphate particles were deposited not only in the tubulointerstitial compartment but in the glomerular and tubular basement membrane. The elemental composition of EC in various tissues matched the calcification of human cardiovascular tissue as determined by energy dispersive spectroscopy. CONCLUSIONS The severity of CKD was unparalleled with the progression of mineral metabolism disorder and EC. Calcification was closely related in different tissues and observed in the glomerular and tubular basement membranes.
Collapse
Affiliation(s)
- Xin Yang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuqiu Liu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Pingsheng Chen
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaotong Xie
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tian Xu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu Zhao
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
4
|
Carboxymethylation of Desmodium styracifolium Polysaccharide and Its Repair Effect on Damaged HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2082263. [PMID: 35993017 PMCID: PMC9391130 DOI: 10.1155/2022/2082263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Desmodium styracifolium is the best traditional medicine for treating kidney calculi in China. This study is aimed at increasing the carboxyl (-COOH) content of D. styracifolium polysaccharide (DSP0) and further increasing its antistone activity. Methods DSP0 was carboxymethylated with chloroacetic acid at varying degrees. Then, oxalate-damaged HK-2 cells were repaired with modified polysaccharide, and the changes in biochemical indices before and after repair were detected. Results Three modified polysaccharides with 7.45% (CDSP1), 12.2% (CDSP2), and 17.7% (CDSP3) -COOH are obtained. Compared with DSP0 (-COOH content = 1.17%), CDSPs have stronger antioxidant activity in vitro and can improve the vitality of damaged HK-2 cells. CDSPs repair the cell morphology and cytoskeleton, increase the cell healing ability, reduce reactive oxygen species and nitric oxide levels, increase mitochondrial membrane potential, limit autophagy level to a low level, reduce the eversion of phosphatidylserine in the cell membrane, weaken the inhibition of oxalate on DNA synthesis, restore cell cycle to normal state, promote cell proliferation, and reduce apoptosis/necrosis. Conclusion The carboxymethylation modification of DSP0 can improve its antioxidant activity and enhance its ability to repair damaged HK-2 cells. Among them, CDSP2 with medium -COOH content has the highest activity of repairing cells, whereas CDSP3 with the highest -COOH content has the highest antioxidant activity. This difference may be related to the active environment of polysaccharide and conformation of the polysaccharide and cell signal pathway. This result suggests that Desmodium styracifolium polysaccharide with increased -COOH content may have improved potential treatment and prevention of kidney calculi.
Collapse
|
5
|
Lu X, Liu L, Feng S, Pan J, Li C, Zheng Y. Preparation and biological properties of ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin biomimetic composite scaffolds for bone tissue engineering. J Biomater Appl 2022; 37:238-248. [PMID: 35487772 DOI: 10.1177/08853282221087110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To imitate the composition of natural bone and further improve the biological property of the materials, ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin (ZnO/HAP/CS-PEO@GEL) composite scaffolds were developed. The core-shell structured chitosan-polyethylene oxide@gelatin (CS-PEO@GEL) nanofibers which could form the intramolecular hydrogen bond and achieve an Arg-Gly-Asp (RGD) polymer were first prepared by coaxial electrospinning to mimic the extracellular matrix. To further enhance biological activity, hydroxyapatite (HAP) was grown on the surface of the CS-PEO@GEL nanofibers using chemical deposition and ZnO particles were then evenly distributed on the surface of the above composite materials using RF magnetron sputtering. The SEM results showed that chemical deposition and magnetron sputtering did not destroy the three-dimensional architecture of materials, which was beneficial to cell growth. The cell compatibility and proliferation of MG-63 cells on ZnO/HAP/CS-PEO@GEL composite scaffolds were superior to those on CS-PEO@GEL and HAP/CS-PEO@GEL composite scaffolds. An appropriate amount of ZnO sputtering could promote the adhesion of cells on the composite nanofibers. The structure of bone tissue could be better simulated both in composition and in the microenvironment, which provided a suitable environment for cell growth and promoted the proliferation of MG-63 cells. The biomimetic ZnO/HAP/CS-PEO@GEL composite scaffolds were promising materials for bone tissue engineering.
Collapse
Affiliation(s)
- Xingjian Lu
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Leyun Liu
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Shixuan Feng
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaqi Pan
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaorong Li
- 12646Zhejiang Sci-Tech University, Hangzhou, China
| | | |
Collapse
|
6
|
Li J, Zhang Y, Yang S, Lu Z, Li G, Liu J, Zhou B, Wu D, Wang L. Isolation, Purification, Characterization, and Immunomodulatory Activity Analysis of α-Glucans from Spirulina platensis. ACS OMEGA 2021; 6:21384-21394. [PMID: 34471742 PMCID: PMC8387993 DOI: 10.1021/acsomega.1c02175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 05/08/2023]
Abstract
Crude polysaccharides from Spirulina platensis (SP) were isolated by maceration with a hot alkali solution and further fractionated by DEAE-52 cellulose and Sephadex G-100 chromatography into two purified fractions PSP-1 and PSP-2. The monosaccharide composition analysis indicated that SP was mainly composed of rhamnose and glucose, while PSP-1 and PSP-2 were composed only of glucose. The composition analysis of PSP-1 and PSP-2 by HPLC, FT-IR, and NMR showed that PSP-1 and PSP-2 were branching dextran, and their structures were (1 → 4)-linked-α-D-Glcp as the main chain, and C-6 replaced the single α-D-Glcp as the linear structure of the branch chain. The glucans (SP/PSP-1/PSP-2) can significantly improve the phagocytic ability of macrophages, enhance iNOS activity, promote NO production, and increase IL-6 mRNA expression, so they may possess certain immunomodulatory activity.
Collapse
Affiliation(s)
- Jian Li
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Yaqi Zhang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
| | - Shen Yang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Zhenhua Lu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Guiling Li
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Jingwen Liu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Bo Zhou
- Department
of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, P. R. China
| | - Daren Wu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Li Wang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
| |
Collapse
|
7
|
Zhang Y, He L, Tu M, Huang M, Chen Y, Pan D, Peng J, Shen X. The ameliorative effect of terpinen-4-ol on ER stress-induced vascular calcification depends on SIRT1-mediated regulation of PERK acetylation. Pharmacol Res 2021; 170:105629. [PMID: 34089864 DOI: 10.1016/j.phrs.2021.105629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress-mediated phenotypic switching of vascular smooth muscle cells (VSMCs) is key to vascular calcification (VC) in patients with chronic kidney disease (CKD). Studies have shown that activation/upregulation of SIRT1 has a protective effect on CKD-VC. Meanwhile, although terpinen-4-ol has been shown to exert a protective effect against cardiovascular disease, its role and underlying mechanism in VC remain unclear. Herein, we explored whether terpinen-4-ol alleviates ER stress-mediated VC through sirtuin 1 (SIRT1) and elucidated its mechanism to provide evidence for its application in the clinical prevention and treatment of VC. To this end, a CKD-related VC animal model and β-glycerophosphate (β-GP)-induced VSMC calcification model were established to investigate the role of terpinen-4-ol in ER stress-induced VC, in vitro and in vivo. Additionally, to evaluate the involvement of SIRT1, mouse and VSMC Sirt1-knockdown models were established. Results show that terpinen-4-ol inhibits calcium deposition, phenotypic switching, and ER stress in VSMCs in vitro and in vivo. Furthermore, pre-incubation of VSMCs with terpinen-4-ol or a SIRT1 agonist, decreased β-GP-induced calcium salt deposition, increased SIRT1 protein level, and inhibited PERK-eIF2α-ATF4 pathway activation, thus, alleviating VC. Similar results were observed in VSMCs induced to overexpress SIRT1 via lentivirus transcription. Meanwhile, the opposite results were obtained in SIRT1-knockdown models. Further, results suggest that SIRT1 physically interacts with, and deacetylates PERK. Specifically, mass spectrometry analysis identified lysine K889 as the acetylation site of SIRT1, which regulates PERK. Finally, inhibition of SIRT1 reduced the effect of terpinen-4-ol on the deacetylation of PERK in vitro and in vivo and weakened the inhibitory effect of terpinen-4-ol against ER stress-mediated VC. Cumulatively, terpinen-4-ol was found to inhibit post-translational modification of PERK at the K889 acetylation site by upregulating SIRT1 expression, thereby ameliorating VC by regulating ER stress. This study provides insights into the underlying molecular mechanism of terpinen-4-ol, supporting its development as a promising therapeutic agent for CKD-VC.
Collapse
MESH Headings
- Acetylation
- Activating Transcription Factor 4/metabolism
- Animals
- Disease Models, Animal
- Endoplasmic Reticulum Stress/drug effects
- Eukaryotic Initiation Factor-2/metabolism
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/pathology
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Terpenes/pharmacology
- Vascular Calcification/enzymology
- Vascular Calcification/etiology
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Li He
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; Department of Pharmacology of Materia Medica (The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Mengxin Tu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Mei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; Department of Pharmacology of Materia Medica (The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Di Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guizhou, China; Department of Pharmacology of Materia Medica (The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), Guizhou Medical University, University Town, Guian New District, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China.
| |
Collapse
|
8
|
Liu Q, Xiang P, Chen M, Luo Y, Zhao Y, Zhu J, Jing W, Yu H. Nano-Sized Hydroxyapatite Induces Apoptosis and Osteogenic Differentiation of Vascular Smooth Muscle Cells via JNK/c-JUN Pathway. Int J Nanomedicine 2021; 16:3633-3648. [PMID: 34079254 PMCID: PMC8166281 DOI: 10.2147/ijn.s303714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The deposition of hydroxyapatite (HAp) crystals plays an important role in the development of vascular calcification (VC). This study aimed to demonstrate the effects of nanosized HAp (nHAp) on vascular smooth muscle cells (VSMCs) and VC progression. Methods Transmission electron microscopy (TEM) was used to examine cellular uptake of nHAp. Cell viability was determined using CCK-8 assay kit. Mitochondrial impairment and reactive oxygen species were detected by TEM and fluorescence dye staining, respectively. Cell apoptosis was detected by Western blot analysis and Annexin V staining. Mouse model of VC was built via applying nHAp on the surface of abdominal aorta. Calcification was visualized by Alizarin red and von Kossa staining. Results We found that nHAp could promote osteogenic transformation of VSMCs by elevating expression of runt-related factor 2 (Runx2), osteopontin (OPN) and alkaline phosphatase (ALP), impairing function and morphology of mitochondria and inducing apoptosis of VSMCs. More phosphorylation of c-Jun N-terminal protein kinase/c-JUN (JNK/c-JUN) in VSMCs was detected after mixing nHAp with VSMCs. HAp-induced osteogenic transformation of VSMCs was blocked by JNK inhibitor SP600125, resulted in decreased ALP activity, less Runx2 and OPN expressions. SP600125 also inhibited apoptosis of VSMCs. Application of nHAp to outside of aorta induced osteogenic transformation and apoptosis of VSMCs, and significant deposition of calcium on the vessel walls of mice, which can be effectively attenuated by SP600125. Conclusion JNK/c-JUN signaling pathway is critical for nHAp-induced calcification, which could be a potential therapeutic target for controlling the progression of VC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Pingping Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Mingyao Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Yi Luo
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Yun Zhao
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China.,The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Jinyun Zhu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Wangwei Jing
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| |
Collapse
|
9
|
Yi R, Deng L, Mu J, Li C, Tan F, Zhao X. The Impact of Antarctic Ice Microalgae Polysaccharides on D-Galactose-Induced Oxidative Damage in Mice. Front Nutr 2021; 8:651088. [PMID: 33768108 PMCID: PMC7985059 DOI: 10.3389/fnut.2021.651088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Antarctic ice microalgae (Chlamydomonas sp.) are a polysaccharide-rich natural marine resource. In this study, we evaluated the impact of Antarctic ice microalgae polysaccharides (AIMP) on D-galactose-induced oxidation in mice. We conducted biological and biochemical tests on tissue and serum samples from mice treated with AIMP. We found that AIMP administration was associated with improved thymus, brain, heart, liver, spleen, and kidney index values. We also found that AIMP treatment inhibited the reduced aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, superoxide dismutase, glutathione peroxidase, and glutathione levels as well as the increased serum, splenic, and hepatic nitric oxide and malondialdehyde levels arising from oxidation in these animals. Pathological examination revealed that AIMP also inhibited D-galactose-induced oxidative damage to the spleen, liver, and skin of these animals. AIMP was additionally found to promote the upregulation of neuronal nitric oxide synthase, endothelial nitric oxide synthase, cuprozinc-superoxide dismutase, manganese superoxide dismutase, catalase, heme oxygenase-1, nuclear factor erythroid 2-related factor 2, γ-glutamylcysteine synthetase, and NAD(P)H dehydrogenase [quinone] 1 as well as the downregulation of inducible nitric oxide synthase in these animals. High-performance liquid chromatography analysis revealed AIMP to be composed of five monosaccharides (mannitol, ribose, anhydrous glucose, xylose, and fucose). Together, these results suggest that AIMP can effectively inhibit oxidative damage more readily than vitamin C in mice with D-galactose-induced oxidative damage, which underscores the value of developing AIMP derivatives for food purposes.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Lei Deng
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
10
|
Protective Effect of Degraded Porphyra yezoensis Polysaccharides on the Oxidative Damage of Renal Epithelial Cells and on the Adhesion and Endocytosis of Nanocalcium Oxalate Crystals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6463281. [PMID: 33763169 PMCID: PMC7946465 DOI: 10.1155/2021/6463281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/14/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
The protective effects of Porphyra yezoensis polysaccharides (PYPs) with molecular weights of 576.2 (PYP1), 105.4 (PYP2), 22.47 (PYP3), and 3.89 kDa (PYP4) on the oxidative damage of human kidney proximal tubular epithelial (HK-2) cells and the differences in adherence and endocytosis of HK-2 cells to calcium oxalate monohydrate crystals before and after protection were investigated. Results showed that PYPs can effectively reduce the oxidative damage of oxalic acid to HK-2 cells. Under the preprotection of PYPs, cell viability increased, cell morphology improved, reactive oxygen species levels decreased, mitochondrial membrane potential increased, S phase cell arrest was inhibited, the cell apoptosis rate decreased, phosphatidylserine exposure reduced, the number of crystals adhered to the cell surface reduced, but the ability of cells to endocytose crystals enhanced. The lower the molecular weight, the better the protective effect of PYP. The results in this article indicated that PYPs can reduce the risk of kidney stone formation by protecting renal epithelial cells from oxidative damage and reducing calcium oxalate crystal adhesion, and PYP4 with the lowest molecular weight may be a potential drug for preventing kidney stone formation.
Collapse
|