1
|
Revathi G, Elavarasi S, Saravanan K, Ashokkumar M, Egbuna C. Greater efficiency of polyherbal drug encapsulated biosynthesized chitosan nano-biopolymer on diabetes and its complications. Int J Biol Macromol 2023; 240:124445. [PMID: 37060982 DOI: 10.1016/j.ijbiomac.2023.124445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Diabetes is a highly complex disease that has an adverse impact on the lives of individuals, and the current medicines used to manage diabetes have obvious side effects. Medicinal plants, on the other hand, may serve as an alternate source of anti-diabetic drugs. A polyherbal combination has a higher and more extensive therapeutic potential than a single herb. Yet, due to deterioration during the absorption process, the usage of this drug still yields inadequate results. Encapsulation of polyherbal drug with chitosan nanoparticles is one of the key ways to solve this problem due to its biocombatibilty, slow and targeted drug delivery characteristics. In the present study, the chitosan was derived from prawn shell and the chitosan nanoparticles had been prepared by ionic-gelation method. The anti-diabetic polyherbal drug (Andrographis paniculata, Andrographis alata, Adhatoda zeylanica, Gymnema sylvestre, Syzygium cumini, and Justicia glabra) was encapsulated with a bio-derived chitosan biopolymer. The drug loading efficiency was about 85 %. The chemical and physical properties of the chitosan and drug-loaded chitosan nanoparticles had been analyzed by FT-IR absorption, XRD, SEM, TEM and EDAX analysis. The antidiabetic efficiency, hepatoprotective activity and antihyperlipedimic activity of the chitosan nanoparticles, polyherbal drug and polyherbal drug encapsulated with chitosan nanoparticles were assessed in a group of rats. The polyherbal drug reduced the serum glucose level from 306.4 mg/dL to 134.47 mg/dL, while the polyherbal drug encapsulated with chitosan nanoparticles reduced to 127.017 mg/dL. This was very close to the serum glucose level of non-diabetic rat (124.65 mg/dL). Further, it considerably increased the insulin level close to that of non-diabetic rat. Thus, the polyherbal drug encapsulated with chitosan nanoparticles showed superior efficiency in antidiabetic and also diabetic complications.
Collapse
Affiliation(s)
- G Revathi
- PG and Research Dept. of Zoology, Nehru Memorial College (Autonomous), Puthanampatti, Thiruchirappalli, Tamilnadu, India
| | - S Elavarasi
- PG and Research Dept. of Zoology, Holy Cross College (Autonomous), Thiruchirappalli, Tamilnadu, India
| | - K Saravanan
- PG and Research Dept. of Zoology, Nehru Memorial College (Autonomous), Puthanampatti, Thiruchirappalli, Tamilnadu, India
| | - M Ashokkumar
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India.
| | - Chukwaebuka Egbuna
- Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Nigeria
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
3
|
Ponneganti S, Suryanarayana Murty U, Bagul C, Borkar RM, Radhakrishnanand P. Phyto-metabolomics of phlogacanthus thyrsiformis by using LC-ESI-QTOF-MS/MS and GC/QTOF-MS: Evaluation of antioxidant and enzyme inhibition potential of extracts. Food Res Int 2022; 161:111874. [DOI: 10.1016/j.foodres.2022.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
4
|
Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, Meng H, Yi F. Advanced Glycation End Products in the Skin: Molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front Med (Lausanne) 2022; 9:837222. [PMID: 35646963 PMCID: PMC9131003 DOI: 10.3389/fmed.2022.837222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are a series of stable compounds produced under non-enzymatic conditions by the amino groups of biomacromolecules and the free carbonyl groups of glucose or other reducing sugars commonly produced by thermally processed foods. AGEs can cause various diseases, such as diabetes, atherosclerosis, neurodegeneration, and chronic kidney disease, by triggering the receptors of AGE (RAGEs) in the human body. There is evidence that AGEs can also affect the different structures and physiological functions of the skin. However, the mechanism is complicated and cumbersome and causes various harms to the skin. This article aims to identify and summarise the formation and characteristics of AGEs, focussing on the molecular mechanisms by which AGEs affect the composition and structure of normal skin substances at different skin layers and induce skin issues. We also discuss prevention and inhibition pathways, provide a systematic and comprehensive method for measuring the content of AGEs in human skin, and summarise and analyse their advantages and disadvantages. This work can help researchers acquire a deeper understanding of the relationship between AGEs and the skin and provides a basis for the development of effective ingredients that inhibit glycation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Jia-Qi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijng, China
| |
Collapse
|
5
|
Komati A, Anand A, Nagendla NK, Madhusudana K, Mudiam MKR, Babu KS, Tiwari AK. Bombax ceiba
calyx displays antihyperglycemic activity via improving insulin secretion and sensitivity: Identification of bioactive phytometabolomes by UPLC‐QTof‐MS/MS. J Food Sci 2022; 87:1865-1881. [DOI: 10.1111/1750-3841.16093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Anusha Komati
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Ajay Anand
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
- Carver College of Medicine, Department of Pathology, University Of Iowa Iowa City USA
| | - Narendra Kumar Nagendla
- Analytical & Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Kuncha Madhusudana
- Applied Biology Division CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Mohana Krishna Reddy Mudiam
- Analytical & Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Katragadda Suresh Babu
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Ashok Kumar Tiwari
- Centre for Natural Products & Traditional Knowledge CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
6
|
Chao J, Chen TY, Pao LH, Deng JS, Cheng YC, Su SY, Huang SS. Ethnobotanical Survey on Bitter Tea in Taiwan. Front Pharmacol 2022; 13:816029. [PMID: 35250565 PMCID: PMC8894760 DOI: 10.3389/fphar.2022.816029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological evidence: In Taiwan, herbal tea is considered a traditional medicine and has been consumed for hundreds of years. In contrast to regular tea, herbal teas are prepared using plants other than the regular tea plant, Camellia sinensis (L.) Kuntze. Bitter tea (kǔ-chá), a series of herbal teas prepared in response to common diseases in Taiwan, is often made from local Taiwanese plants. However, the raw materials and formulations have been kept secret and verbally passed down by store owners across generations without a fixed recipe, and the constituent plant materials have not been disclosed. Aim of the study: The aim was to determine the herbal composition of bitter tea sold in Taiwan, which can facilitate further studies on pharmacological applications and conserve cultural resources. Materials and methods: Interviews were conducted through a semi-structured questionnaire. The surveyed respondents were traditional sellers of traditional herbal tea. The relevant literature was collated for a systematic analysis of the composition, characteristics, and traditional and modern applications of the plant materials used in bitter tea. We also conducted an association analysis of the composition of Taiwanese bitter tea with green herb tea (qing-cao-cha tea), another commonly consumed herbal tea in Taiwan, as well as herbal teas in neighboring areas outside Taiwan. Results: After visiting a total of 59 stores, we identified 32 bitter tea formulations and 73 plant materials. Asteraceae was the most commonly used family, and most stores used whole plants. According to a network analysis of nine plant materials used in high frequency as drug pairs, Tithonia diversifolia and Ajuga nipponensis were found to be the core plant materials used in Taiwanese bitter tea. Conclusion: Plant materials used in Taiwanese bitter tea were distinct, with multiple therapeutic functions. Further research is required to clarify their efficacy and mechanisms.
Collapse
Affiliation(s)
- Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Ting-Yang Chen
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| | - Shyh-Shyun Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| |
Collapse
|
7
|
Das G, Shin HS, Ningthoujam SS, Talukdar AD, Upadhyaya H, Tundis R, Das SK, Patra JK. Systematics, Phytochemistry, Biological Activities and Health Promoting Effects of the Plants from the Subfamily Bombacoideae (Family Malvaceae). PLANTS 2021; 10:plants10040651. [PMID: 33805546 PMCID: PMC8067233 DOI: 10.3390/plants10040651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023]
Abstract
Plants belonging to the subfamily Bombacoideae (family Malvaceae) consist of about 304 species, many of them having high economical and medicinal properties. In the past, this plant group was put under Bombacaceae; however, modern molecular and phytochemical findings supported the group as a subfamily of Malvaceae. A detailed search on the number of publications related to the Bombacoideae subfamily was carried out in databases like PubMed and Science Direct using various keywords. Most of the plants in the group are perennial tall trees usually with swollen tree trunks, brightly colored flowers, and large branches. Various plant parts ranging from leaves to seeds to stems of several species are also used as food and fibers in many countries. Members of Bombacoides are used as ornamentals and economic utilities, various plants are used in traditional medication systems for their anti-inflammatory, astringent, stimulant, antipyretic, microbial, analgesic, and diuretic effects. Several phytochemicals, both polar and non-polar compounds, have been detected in this plant group supporting evidence of their medicinal and nutritional uses. The present review provides comprehensive taxonomic, ethno-pharmacological, economic, food and phytochemical properties of the subfamily Bombacoideae.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Korea;
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi 10326, Korea;
| | - Sanjoy Singh Ningthoujam
- Department of Botany, Ghanapriya Women’s College, Dhanamanjuri University, Imphal 795001, India;
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India;
| | | | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy;
| | - Swagat Kumar Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar, Odisha 751003, India;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Korea;
- Correspondence:
| |
Collapse
|