1
|
Fadaei M, Lahijan ASN, Jahanmehr D, Ahmadi A, Asadi-Golshan R. Food additives for the central nervous system, useful or harmful? An evidence-based review. Nutr Neurosci 2025:1-18. [PMID: 39777413 DOI: 10.1080/1028415x.2024.2433257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives. METHODS A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior. RESULTS It summarizes research findings on additives such as aspartame, stevia, methylene blue, azo dyes, sodium benzoate, and monosodium glutamate. It also covers mechanisms such as oxidative stress, neuroinflammation, and disruptions in neurotransmitter systems. Furthermore, it emphasizes the properties of natural compounds such as garlic (Allium sativum), tetramethylpyrazine, curcumin, licorice root extract (glycyrrhizin), and polyphenols in mitigating CNS damage caused by food additives. DISCUSSION Although ongoing studies are expanding our knowledge on the effects of these additives, future CNS research should focus on long-term investigations involving subjects to provide a more comprehensive understanding of the cumulative impacts of different additives and update regulatory standards based on new scientific findings.
Collapse
Affiliation(s)
- Mohammadmahdi Fadaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Davood Jahanmehr
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Khalaf MM, Mahmoud HM, Kandeil MA, Mahmoud HA, Salama AA. Fumaric acid protects rats from ciprofloxacin-provoked depression through modulating TLR4, Nrf-2, and p190-rho GTP. Drug Chem Toxicol 2024; 47:897-908. [PMID: 39563658 DOI: 10.1080/01480545.2024.2310641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/21/2024]
Abstract
Depression is a persistent illness affecting health, behavior, and performance in life. Worldwide morbidity and mortality are caused by depression. The current study intended to explore fumaric acid's potential protective effect against ciprofloxacin-provoked depression in rats and to determine its mechanism of action by studying its antioxidant and anti-inflammatory properties. Five groups of male Wistar albino rats (120 g ± 20) were employed; the first group received physiological saline, the second group received fumaric acid (80 mg/kg/day; orally) for 3 weeks, the third group was administered ciprofloxacin (50 mg/kg/day; orally) for 3 weeks to induce depression, the fourth group received a daily low dose of fumaric acid (40 mg/kg; orally) concurrent with ciprofloxacin and the fifth group received a daily high dose of fumaric acid (80 mg/kg; orally) concurrent with ciprofloxacin for 21 days. Then, behavior tests, oxidative stress indicators, inflammatory biomarkers, neurotransmitters, p190 Rho GTP, and histopathological examination were evaluated. Ciprofloxacin significantly increased oxidative stress biomarkers [malondialdehyde (MDA) as a lipid peroxidation marker and nitric oxide (NO)] and biomarkers of inflammation [Toll-like receptor4 (TLR-4)] and tumor necrosis factor-alpha (TNF-α) with reduction in the activities of the nuclear factor erythroid 2-related factor 2 (Nrf-2) and catalase as well as brain contents of neurotransmitters and P190-RHO GTP. In addition, it causes necrosis of neurons and mild loss of Purkinje cells. Fumaric acid eliminates these effects of ciprofloxacin. Fumaric acid has beneficial effects as an anti-depressant in Wistar albino male rats that received ciprofloxacin.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Mahmoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Abeer A Salama
- Department of Pharmacology, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Wan X, Li D, Lu J, Yan Y, He Z, Chen J, Jiao Y, Li J, Li W. The construction of garlic diallyl disulfide nano-emulsions and their effect on the physicochemical properties and heterocyclic aromatic amines formation in roasted pork. Food Chem 2023; 408:135159. [PMID: 36549165 DOI: 10.1016/j.foodchem.2022.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Garlic diallyl disulfide (DAD) nano-emulsions consisting of soy proteins were constructed, and their effects on physicochemical properties and heterocyclic aromatic amines (HAAs) formation in roasted pork were investigated. DAD was well encapsulated by soy proteins with a mean particle of 400-700 nm. Applying DAD nano-emulsions to pork patties significantly altered the color and texture of roasted pork, with a slight increase in brightness and decreases in redness and yellowness. The flavor determination demonstrated that sulfur-containing compound levels in encapsulated DAD were significantly reduced, particularly 7S group compounds, indicating an effective shielding effect on the irritating odor of garlic oil by protein. The levels of three HAAs (MeIQx, PhIP, and Harman) were significantly reduced by DAD nano-emulsion exposure (51.84 %, 76.80 %, and 48.70 %, respectively). This study provides a new method for inhibiting HAA formation and improving the sensory qualities of meat products.
Collapse
Affiliation(s)
- Xin Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Danyang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jiayan Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yan Yan
- Institute of Agro-products Processing, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Adelusi TI, Boyenle ID, Tolulope A, Adebisi J, Fatoki JO, Ukachi CD, Oyedele AQK, Ayoola AM, Timothy AA. GCMS fingerprints and phenolic extracts of Allium sativum inhibit key enzymes associated with type 2 diabetes. J Taibah Univ Med Sci 2023; 18:337-347. [PMID: 36817213 PMCID: PMC9926220 DOI: 10.1016/j.jtumed.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023] Open
Abstract
Objectives Inhibition of carbohydrate digestion enzymes (α-amylase and α-glucosidase) has been reported in studies as a therapeutic approach for the management or treatment of type 2 diabetes mellitus, owing to its potential to decrease postprandial hyperglycemia. The anti-diabetic potential of Allium sativum (also known as garlic) against diabetes mellitus has been established. Therefore, in this study, we assessed the antidiabetic potential of A. sativum using in vitro enzyme assays after which we explored computational modelling approach using the quantified GC-MS identities to unravel the key bioactive compounds responsible for the anti-diabetic potential. Methods We used in vitro enzyme inhibition assays (α-amylase and α-glucosidase) to evaluate antidiabetic potential and subsequently performed gas chromatography-mass spectroscopy (GC-MS) to identify and quantify the bioactive compounds of the plant extract. The identified bioactive compounds were subjected to in silico docking and pharmacokinetic assessment. Results A. sativum phenolic extract showed high dose-dependent inhibition of α-amylase and α-glucosidase (p < 0.05). Interestingly, the extract inhibited α-glucosidase with a half maximal inhibitory concentration of 53.75 μg/mL, a value higher than that obtained for the standard acarbose. Docking simulation revealed that morellinol and phentolamine were the best binders of α-glucosidase, with mean affinity values of -7.3 and -7.1 kcal/mol, respectively. These compounds had good affinity toward active site residues of the enzyme, and excellent drug-like and pharmacokinetic properties supporting clinical applications. Conclusions Our research reveals the potential of A. sativum as a functional food for the management of type 2 diabetes, and suggests that morellinol and phentolamine may be the most active compounds responsible for this anti-diabetic prowess. Therefore these compounds require further clinical asessment to demonstrate their potential for drug development.
Collapse
Affiliation(s)
- Temitope I. Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Ibrahim D. Boyenle
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- College of Health Sciences, Crescent University, Abeokuta, Nigeria
| | - Ajao Tolulope
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Jonathan Adebisi
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - John O. Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Osogbo, Osun State, Nigeria
| | - Chiamaka D. Ukachi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdul-Quddus K. Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Ashiru M. Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria
| | - Akinniyi A. Timothy
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
5
|
Kamel R, Afifi SM, Abdou AM, Esatbeyoglu T, AbouSamra MM. Nanolipogel Loaded with Tea Tree Oil for the Management of Burn: GC-MS Analysis, In Vitro and In Vivo Evaluation. Molecules 2022; 27:molecules27196143. [PMID: 36234697 PMCID: PMC9570711 DOI: 10.3390/molecules27196143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The GC-MS analysis of tea tree oil (TTO) revealed 38 volatile components with sesquiterpene hydrocarbons (43.56%) and alcohols (41.03%) as major detected classes. TTO efficacy is masked by its hydrophobicity; nanoencapsulation can address this drawback. The results showed that TTO-loaded solid lipid nanoparticles (SLN1), composed of glyceryl monostearate (2% w/w) and Poloxamer188 (5% w/w), was spherical in shape with a core-shell microstructure. TTO-SLN1 showed a high entrapment efficiency (96.26 ± 2.3%), small particle size (235.0 ± 20.4 nm), low polydispersity index (0.31 ± 0.01), and high negative Zeta potential (−32 mV). Moreover, it exhibited a faster active agent release (almost complete within 4 h) compared to other formulated TTO-SLNs as well as the plain oil. TTO-SLN1 was then incorporated into cellulose nanofibers gel, isolated from sugarcane bagasse, to form the ‘TTO-loaded nanolipogel’ which had a shear-thinning behavior. Second-degree thermal injuries were induced in Wistar rats, then the burned skin areas were treated daily for 7 days with the TTO-loaded nanolipogel compared to the unmedicated nanolipogel, the TTO-loaded conventional gel, and the normal saline (control). The measurement of burn contraction proved that TTO-loaded nanolipogel exhibited a significantly accelerated skin healing, this was confirmed by histopathological examination as well as quantitative assessment of inflammatory infiltrate. This study highlighted the success of the proposed nanotechnology approach in improving the efficacy of TTO used for the repair of skin damage induced by burns.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: or (R.K.); (T.E.); Tel.: +201113639193 (R.K.); +49-511-762-5589 (T.E.)
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Amr M. Abdou
- Department of Microbiology and Immunology, National Research Centre, Cairo 12622, Egypt
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: or (R.K.); (T.E.); Tel.: +201113639193 (R.K.); +49-511-762-5589 (T.E.)
| | - Mona M. AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
6
|
AbouSamra MM, El Hoffy NM, El-Wakil NA, Awad GEA, Kamel R. Computational Investigation to Design Ofloxacin-Loaded Hybridized Nanocellulose/Lipid Nanogels for Accelerated Skin Repair. Gels 2022; 8:gels8090593. [PMID: 36135305 PMCID: PMC9498533 DOI: 10.3390/gels8090593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The pharmaceutical application of biomaterials has attained a great success. Rapid wound healing is an important goal for many researchers. Hence, this work deals with the development of nanocellulose crystals/lipid nanogels loaded with ofloxacin (OFX) to promote skin repair while inhibiting bacterial infection. Ofloxacin-loaded hybridized nanocellulose/lipid nanogels (OFX-HNCNs) were prepared and evaluated adopting a computational method based on regression analysis. The optimized nanogels (OFX-HNCN7) showed a spherical outline with an encapsulation efficiency (EE), particle size (PS) and zeta potential (ZP) values of 97.53 ± 1.56%, 200.2 ± 6.74 nm and -26.4 ± 0.50 mV, respectively, with an extended drug release profile. DSC examination of OFX-HNCN7 proved the amorphization of the encapsulated drug into the prepared OFX-HNCNs. Microbiological studies showed the prolonged inhibition of bacterial growth by OFX-HNCN7 compared to the free drug. The cytocompatibility of OFX-HNCN7 was proved by Sulforhodamine B assay. Tissue repair was evaluated using the epidermal scratch assay based on cell migration in human skin fibroblast cell line, and the results depicted that cell treated with OFX-HNCN7 showed a faster and more efficient healing compared to the control. In overall, the obtained findings emphasize the benefits of using the eco-friendly bioactive nanocellulose, hybridized with lipid, to prepare a nanocarrier for skin repair.
Collapse
Affiliation(s)
- Mona M. AbouSamra
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nada M. El Hoffy
- Faculty of Pharmacy, Future University in Egypt, New Cairo 11835, Egypt
- Correspondence: (N.M.E.H.); or (R.K.); Tel.: +20-100-80-20-20-2 (N.M.E.H.); +20-11-13-63-91-93 (R.K.)
| | - Nahla A. El-Wakil
- Cellulose and Paper Department, National Research Centre, Giza 12622, Egypt
| | - Ghada E. A. Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Giza 12622, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Giza 12622, Egypt
- Correspondence: (N.M.E.H.); or (R.K.); Tel.: +20-100-80-20-20-2 (N.M.E.H.); +20-11-13-63-91-93 (R.K.)
| |
Collapse
|
7
|
Kamel R, EL-Deeb NM, Abbas H. Development of a potential anti-cancer pulmonary nanosystem consisted of chitosan-doped LeciPlex loaded with resveratrol using a machine learning method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Antunes JC, Domingues JM, Miranda CS, Silva AFG, Homem NC, Amorim MTP, Felgueiras HP. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar Drugs 2021; 19:md19070359. [PMID: 34201803 PMCID: PMC8303307 DOI: 10.3390/md19070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity, which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and interacting with negatively charged outer cellular components, which lead to an increase in the cell permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS’s potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics, considering that most of the latter have induced bacterial resistance because of excessive and/or inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered release, dependent on CS’s protonation/deprotonation of its amine groups, has been the most explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or additional stabilization processes is enabling slower release rates, following extract diffusion from the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few published studies have already revealed that the composition, along with an adequate drug release rate, has an important role in controlling an existing infection, forming new tissue, and successfully closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration, superior washing durability, and biological response.
Collapse
|
9
|
Kamel R, Elmotasem H, Abdelsalam E, Salama A. Lepidium sativum seed oil 3D nano-oleogel for the management of diabetic wounds: GC/MS analysis, in-vitro and in-vivo studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Salama A, Mahmoud HAA, Kandeil MA, Khalaf MM. Neuroprotective role of camphor against ciprofloxacin induced depression in rats: modulation of Nrf-2 and TLR4. Immunopharmacol Immunotoxicol 2021; 43:309-318. [PMID: 34032546 DOI: 10.1080/08923973.2021.1905658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Depression affects people feeling to be anxious, worried, and restless. They also lose interest in activities, concentrating and appetite, they finally may attempt suicide. Depression is the second chronic disease, as a source of the global burden of disease, after heart disease. Its prevalence elevated seven times during the COVID-19. AIM The current study was designed to evaluate camphor neuroprotective role against rats' ciprofloxacin-induced depression. MATERIALS AND METHODS Depression was induced by administration of ciprofloxacin (50 mg/kg; orally) for 21 days. Wister albino male rats were divided into five groups. Group I (normal control): rats were given normal saline. Group II: rats received camphor (10 mg/kg; i.p.) for 21 days. Group III (depression control): rats received ciprofloxacin only. Groups IV and V: rats received camphor (5 and 10 mg/kg; i.p.) for 21 days concurrent with ciprofloxacin. Behavior tests as forced swimming test, activity cage, and rotarod were estimated. Oxidative stress and antioxidant biomarkers as malondialdehyde (MDA), nitric oxide (NO), catalase, and nuclear factor erythroid 2-related factor 2 (Nrf-2) besides inflammatory biomarkers as Toll-like receptor 4 (TLR4) and tumor necrosis factor alpha (TNF-α) as well as neurotransmitters were determined. Finally, histopathological examination was done. RESULTS Camphor increased catalase and Nrf-2 activities, decreased NO, MDA, TNF-α, TLR4 serum levels, and elevating brain contents of serotonin, dopamine, gamma-amino butyric acid (GABA) and P190-RHO GTP protein with normal neuronal cells of the frontal cortex. CONCLUSION Camphor has neuroprotective effect via modulation of Nrf-2 and TLR4 against ciprofloxacin-induced depression in rats.
Collapse
Affiliation(s)
- Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Mohamed Ahmed Kandeil
- Department of Biochemistry, Faculty of Veterinary medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa Mahmoud Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|