1
|
Chen Y, Zhang Y, Wang J. Design automation for deterministic lateral displacement by leveraging deep Q-network. BIOMICROFLUIDICS 2025; 19:024103. [PMID: 40182064 PMCID: PMC11964474 DOI: 10.1063/5.0243605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
Despite the widespread application of microfluidic chips in research fields, such as cell biology, molecular biology, chemistry, and life sciences, the process of designing new chips for specific applications remains complex and time-consuming, often relying on experts. To accelerate the development of high-performance and high-throughput microfluidic chips, this paper proposes an automated Deterministic Lateral Displacement (DLD) chip design algorithm based on reinforcement learning. The design algorithm proposed in this paper treats the throughput and sorting efficiency of DLD chips as key optimization objectives, achieving multi-objective optimization. The algorithm integrates existing research results from our team, enabling rapid evaluation and scoring of DLD chip design parameters. Using this comprehensive performance evaluation system and deep Q-network technology, our algorithm can balance optimal separation efficiency and high throughput in the automated design process of DLD chips. Additionally, the quick execution capability of this algorithm effectively guides engineers in developing high-performance and high-throughput chips during the design phase.
Collapse
Affiliation(s)
- Yuwei Chen
- Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Yidan Zhang
- Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Junchao Wang
- Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
2
|
Zhang Y, Wang J, Chen J, Su G, Zhao WS, Liu J. Machine Learning-Enhanced Predictive Modeling for Arbitrary Deterministic Lateral Displacement Design and Test. IEEE Trans Nanobioscience 2025; 24:46-62. [PMID: 38885111 DOI: 10.1109/tnb.2024.3415365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The separation of biological particles like cells and macromolecules from liquid samples is vital in clinical medicine, supporting liquid biopsies and diagnostics. Deterministic Lateral Displacement (DLD) is prominent for sorting particles in microfluidics by size. However, the design, fabrication, and testing of DLDs are complex and time-consuming. Researchers typically rely on finite element analysis to predict particle trajectories, which are crucial in evaluating the performance of DLD. Traditional particle trajectory predictions through finite element analysis often inaccurately reflect experimental results due to manufacturing and experimental variabilities. To address this issue, we introduced a machine learning-enhanced approach, combining past experimental data and advanced modeling techniques. Our method, using a dataset of 132 experiments from 40 DLD chips and integrating finite element simulation with a microfluidic-optimized particle simulation algorithm (MOPSA) and a Random Forest model, improves trajectory prediction and critical size determination without physical tests. This enhanced accuracy in simulation across various DLD chips speeds up development. Our model, validated against three DLD chip designs, showed a high correlation between predicted and experimental particle trajectories, streamlining chip development for clinical applications.
Collapse
|
3
|
Jang YO, Roh Y, Shin W, Jo S, Koo B, Liu H, Kim MG, Lee HJ, Qiao Z, Lee EY, Lee M, Lee J, Lee EJ, Shin Y. Transferrin-conjugated magnetic nanoparticles for the isolation of brain-derived blood exosomal MicroRNAs: A novel approach for Parkinson's disease diagnosis. Anal Chim Acta 2024; 1306:342623. [PMID: 38692796 DOI: 10.1016/j.aca.2024.342623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wangyong Shin
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Yeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Jang YO, Kim NH, Roh Y, Koo B, Lee HJ, Kim JY, Kim SH, Shin Y. Self-directed molecular diagnostics (SdMDx) system for COVID-19 via one-pot processing. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 378:133193. [PMID: 36570722 PMCID: PMC9759472 DOI: 10.1016/j.snb.2022.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Rapid, sensitive, and specific detection of the severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 during early infection is pivotal in controlling the spread and pathological progression of Coronavirus Disease 2019 (COVID-19). Thus, highly accurate, affordable, and scalable point-of-care (POC) diagnostic technologies are necessary. Herein, we developed a rapid and efficient self-directed molecular diagnostic (SdMDx) system for SARS-CoV-2. This system combines the sample preparation step, including virus enrichment and extraction processes, which involve dimethyl suberimidate dihydrochloride and diatomaceous earth functionalized with 3-aminopropyl(diethoxy)methylsilane, and the detection step using loop-mediated isothermal amplification-lateral flow assay (LAMP-LFA). Using the SdMDx system, SARS-CoV-2 could be detected within 47 min by hand without the need for any larger instruments. The SdMDx system enabled detection as low as 0.05 PFU in the culture fluid of SARS-CoV-2-infected VeroE6 cells. We validated the accuracy of the SdMDx system on 38 clinical nasopharyngeal specimens. The clinical utility of the SdMDx system for targeting the S gene of SARS-CoV-2 showed 94.4% sensitivity and 100% specificity. This system is more sensitive than antigen and antibody assays, and it minimizes the use of complicated processes and reduces contamination risks. Accordingly, we demonstrated that the SdMDx system enables a rapid, accurate, simple, efficient, and inexpensive detection of SARS-CoV-2 at home, in emergency facilities, and in low-resource sites as a pre-screening platform and POC testing through self-operation and self-diagnosis.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Nam Hun Kim
- INFUSIONTECH, 38 Heungan-daero, 427 beon-gil, Dongan-gu, Anyang-si 14059, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Jang YO, Ahn HS, Dao TNT, Hong J, Shin W, Lim YM, Chung SJ, Lee JH, Liu H, Koo B, Kim MG, Kim K, Lee EJ, Shin Y. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases. Biomater Res 2023; 27:12. [PMID: 36797805 PMCID: PMC9936675 DOI: 10.1186/s40824-023-00353-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Brain-derived exosomes released into the blood are considered a liquid biopsy to investigate the pathophysiological state, reflecting the aberrant heterogeneous pathways of pathological progression of the brain in neurological diseases. Brain-derived blood exosomes provide promising prospects for the diagnosis of neurological diseases, with exciting possibilities for the early and sensitive diagnosis of such diseases. However, the capability of traditional exosome isolation assays to specifically isolate blood exosomes and to characterize the brain-derived blood exosomal proteins by high-throughput proteomics for clinical specimens from patients with neurological diseases cannot be assured. We report a magnetic transferrin nanoparticles (MTNs) assay, which combined transferrin and magnetic nanoparticles to isolate brain-derived blood exosomes from clinical samples. METHODS The principle of the MTNs assay is a ligand-receptor interaction through transferrin on MTNs and transferrin receptor on exosomes, and electrostatic interaction via positively charged MTNs and negatively charged exosomes to isolate brain-derived blood exosomes. In addition, the MTNs assay is simple and rapid (< 35 min) and does not require any large instrument. We confirmed that the MTNs assay accurately and efficiently isolated exosomes from serum samples of humans with neurodegenerative diseases, such as dementia, Parkinson's disease (PD), and multiple sclerosis (MS). Moreover, we isolated exosomes from serum samples of 30 patients with three distinct neurodegenerative diseases and performed unbiased proteomic analysis to explore the pilot value of brain-derived blood protein profiles as biomarkers. RESULTS Using comparative statistical analysis, we found 21 candidate protein biomarkers that were significantly different among three groups of neurodegenerative diseases. CONCLUSION The MTNs assay is a convenient approach for the specific and affordable isolation of extracellular vesicles from body fluids for minimally-invasive diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Yoon Ok Jang
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hee-Sung Ahn
- grid.413967.e0000 0001 0842 2126Department of Convergence Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea
| | - Thuy Nguyen Thi Dao
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - JeongYeon Hong
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505 Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Wangyong Shin
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Young-Min Lim
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Sun Ju Chung
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Huifang Liu
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Bonhan Koo
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Myoung Gyu Kim
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea. .,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Liu H, Zou Q, Qiao Z, Jang YO, Koo B, Kim MG, Lee HJ, Kim SH, Shin Y. Facile Homobifunctional Imidoester Modification of Advanced Nanomaterials for Enhanced Antibiotic Synergistic Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40401-40414. [PMID: 34405670 DOI: 10.1021/acsami.1c12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Resistance to antibiotics because of misuse and overuse is one of the greatest public health challenges worldwide. Despite the introduction of advanced nanotechnology in the production of antibiotics, the choice of appropriate medicines is limited due to side effects such as blood coagulation, toxicity, low efficacy, and low biocompatibility; therefore, novel nanomaterial composites are required to counter these repercussions. We first introduce a facile method for synthesizing a homobifunctional imidoester-coated nanospindle (HINS) zinc oxide composite for enhancement of antibiotic efficacy and reduction of toxicity and blood coagulation. The antibiotic efficacy of the composites is twice that of commercialized zinc nanoparticles; in addition, they have good biocompatibility, have increased surface charge and solubility owing to the covalent acylation groups of HI, and produce a large number of Zn+ ions and defensive reactive oxygen species (ROS) that effectively kill bacteria and fungi. The synergistic effect of a combination therapy with the HINS composite and itraconazole shows more than 90% destruction of fungi in treatments with low dosage with no cytotoxicity or coagulation evident in intravenous administration in in vitro and in vivo experiments. Thus, HINS composites are useful in reducing the effect of misuse and overuse of antibiotics in the medical field.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Qingshuang Zou
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
7
|
Jang YO, Noh GS, Liu H, Koo B, Qiao Z, Shin Y. Dimethyl 3,3'-dithiobispropionimidate-functionalized diatomaceous earth particles for efficient biomolecule separation. Sci Rep 2020; 10:15592. [PMID: 32973156 PMCID: PMC7519118 DOI: 10.1038/s41598-020-72913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 11/09/2022] Open
Abstract
The early diagnosis and monitoring of cancers are key factors in effective cancer treatment. Particularly, the separation of biomolecules is an essential step for both diagnostic and analytical purposes. However, the current techniques used to isolate biomolecules are intensive, laborious, and require multiple instruments as well as repeated sample preparations to separate each biomolecule. Thus, an efficient separation system that can simultaneously separate biomolecules from scarce samples is highly desirable. Hence, in this study, we developed a biosilica-based syringe filtration system for the efficient separation of biomolecules from cancer samples using amine-modified diatomaceous earth (AD) with dimethyl 3,3′-dithiobispropionimidate (DTBP). The syringe filter can be an efficient and rapid tool for use in various procedures without complex instruments. The DTBP-based AD system was combined with the syringe filter system for nucleic acid and protein separation from various cancer cells. We demonstrated the efficacy of the DTBP-based AD in a single-filter system for the efficient separation of DNA and proteins within 40 min. This DTBP-based AD syringe filter system showed good rapidity, efficiency, and affordability in the separation of biomolecules from single samples for the early diagnosis and clinical analysis of cancers.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea
| | - Huifang Liu
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea
| | - Zhen Qiao
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Jin CE, Koo B, Lee HJ, Park IJ, Kim SH, Shin Y. Bis(sulfosuccinimidyl)suberate-Based Helix-Shaped Microchannels as Enhancers of Biomolecule Isolation from Liquid Biopsies. Anal Chem 2020; 92:11994-12001. [PMID: 32867489 DOI: 10.1021/acs.analchem.0c02503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most studies of ultrasensitive diagnosis of biomolecules from liquid specimens are limited by problems during sample preparation steps, including enrichment and isolation of biomolecules. Here we report a novel platform combining bis(sulfosuccinimidyl)suberate (BS3) and helix-shaped microchannels (BSH) to change the sample preparation paradigm. This BSH system is composed of BS3 for pathogen enrichment and nucleic acid isolation by electrostatic and covalent interaction, and helix-shaped microchannels to minimize sample loss and remove bubbles in large liquid specimens without pH change. The system detected Mycobacterium tuberculosis following enrichment and isolation of 10 mL of liquefied sputum from 11 patients with tuberculosis. Moreover, the system identified KRAS mutations following cell-free DNA isolation of blood plasma from 10 patients with colorectal cancer. This system allows ultrasensitive diagnosis in various disease applications with large volumes of liquid samples.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Hyo Joo Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - In Ja Park
- Division of Colon & Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|