1
|
Sun Z, Fu H, Zhang R, Wang H, Shen S, Zhao C, Li X, Sun Y, Li Y, Li Y. Advances in chemically modified HSA as a multifunctional carrier for transforming cancer therapy regimens. Int J Biol Macromol 2025; 305:141373. [PMID: 39988174 DOI: 10.1016/j.ijbiomac.2025.141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Human serum albumin (HSA) is a versatile, biodegradable, biocompatible, non-toxic, and non-immunogenic protein nanocarrier, making it an ideal platform for developing advanced drug delivery systems. These properties have garnered significant attention in utilizing HSA nanoparticles for the safe and efficient delivery of chemotherapeutic agents. HSA-based nanoparticles can be surface-modified with various ligands to enable tumor-targeted drug delivery, enhancing therapeutic specificity and efficacy. Furthermore, the multifunctionality of HSA nanoparticles offers promising strategies to overcome challenges in cancer therapy, including poor bioavailability, off-target toxicity, and drug resistance. This review highlights the structural features of HSA, explores its diverse modifications to improve drug-binding affinity and targeting ability, and discusses its potential as a multifunctional carrier in oncology. By summarizing the latest advances in HSA modification techniques and applications, this review provides a comprehensive perspective on the future of protein-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruixuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyang Shen
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yujiao Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Rodríguez Saravia M, Martínez V, Vairoletti F, Macías M, Davyt D, Hernández Dossi G, Mahler G. Novel enantiopure δ-thiolactones: synthesis, structural characterization, and reactivity studies. RSC Adv 2024; 14:40287-40298. [PMID: 39720259 PMCID: PMC11667218 DOI: 10.1039/d4ra07780f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
A new series of chiral δ-thiolactone derivatives have been prepared. These compounds exemplify the acetalic N-C-S reversibility of fused thiazolidines toward the thermodynamic product. The stereochemistry of the synthesized compounds was elucidated using X-ray crystallography, NOESY spectroscopy, and DFT calculations. The aminolysis reaction of the δ-thiolactone was studied with various alkyl amines, which can open the thioester to yield amido thiols in a single step. This reaction has the potential to be applied in the synthesis of bioactive compounds, polymer chemistry, and dynamic combinatorial chemistry, among others fields.
Collapse
Affiliation(s)
- Magdalena Rodríguez Saravia
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, Facultad de Quimica, Universidad de la República Gral Flores 2124 Montevideo 11800 Uruguay
- Programa de Posgrado en Quimica, Universidad de la República Uruguay Gral Flores 2124 Montevideo 11800 Uruguay
| | - Verónica Martínez
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, Facultad de Quimica, Universidad de la República Gral Flores 2124 Montevideo 11800 Uruguay
| | - Franco Vairoletti
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, Facultad de Quimica, Universidad de la República Gral Flores 2124 Montevideo 11800 Uruguay
- Programa de Posgrado en Quimica, Universidad de la República Uruguay Gral Flores 2124 Montevideo 11800 Uruguay
| | - Mario Macías
- Cristalografía y Química de Materiales, CrisQuimMat, Departamento de Química, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Danilo Davyt
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, Facultad de Quimica, Universidad de la República Gral Flores 2124 Montevideo 11800 Uruguay
| | - Gonzalo Hernández Dossi
- Departamento de Química Orgánica, Laboratorio de Resonancia Magnética Nuclear, Facultad de Química, Universidad de la República Gral Flores 2124 Montevideo 11800 Uruguay
| | - Graciela Mahler
- Departamento de Química Orgánica, Laboratorio de Química Farmacéutica, Facultad de Quimica, Universidad de la República Gral Flores 2124 Montevideo 11800 Uruguay
| |
Collapse
|
3
|
Mitin D, Bullinger F, Dobrynin S, Engelmann J, Scheffler K, Kolokolov M, Krumkacheva O, Buckenmaier K, Kirilyuk I, Chubarov A. Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI. Int J Mol Sci 2024; 25:4041. [PMID: 38612851 PMCID: PMC11012161 DOI: 10.3390/ijms25074041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential "metal-free" organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40-50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21-27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Collapse
Affiliation(s)
- Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Friedemann Bullinger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Sergey Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Mikhail Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Igor Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
4
|
Raskolupova VI, Wang M, Dymova MA, Petrov GO, Shchudlo IM, Taskaev SY, Abramova TV, Godovikova TS, Silnikov VN, Popova TV. Design of the New Closo-Dodecarborate-Containing Gemcitabine Analogue for the Albumin-Based Theranostics Composition. Molecules 2023; 28:molecules28062672. [PMID: 36985644 PMCID: PMC10056911 DOI: 10.3390/molecules28062672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Combination therapy is becoming an increasingly important treatment strategy because multi-drugs can maximize therapeutic effect and overcome potential mechanisms of drug resistance. A new albumin-based theranostic containing gemcitabine closo-dodecaborate analogue has been developed for combining boron neutron capture therapy (BNCT) and chemotheraphy. An exo-heterocyclic amino group of gemcitabine was used to introduce closo-dodecaborate, and a 5′-hydroxy group was used to tether maleimide moiety through an acid-labile phosphamide linker. The N-trifluoroacylated homocysteine thiolactone was used to attach the gemcitabine analogue to human serum albumin (HSA) bearing Cy5 or Cy7 fluorescent dyes. The half-maximal inhibitory concentration (IC50) of the designed theranostic relative to T98G cells was 0.47 mM with the correlation coefficient R = 0.82. BNCT experiments resulted in a decrease in the viability of T98G cells, and the survival fraction was ≈ 0.4.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Meiling Wang
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Gleb O. Petrov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Ivan M. Shchudlo
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergey Yu. Taskaev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana S. Godovikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +8-383-3635183
| |
Collapse
|
5
|
Raskolupova VI, Popova TV, Zakharova OD, Nikotina AE, Abramova TV, Silnikov VN. Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 2021; 26:2679. [PMID: 34063643 PMCID: PMC8124464 DOI: 10.3390/molecules26092679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Anastasia E. Nikotina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| |
Collapse
|