1
|
Gordhan HM, Miller ST, Clancy DC, Ina M, McDougal AV, Cutno DK, Brown RV, Lichorowic CL, Sturdivant JM, Vick KA, Williams SS, deLong MA, White JC, Kopczynski CC, Ellis DA. Eyes on Topical Ocular Disposition: The Considered Design of a Lead Janus Kinase (JAK) Inhibitor That Utilizes a Unique Azetidin-3-Amino Bridging Scaffold to Attenuate Off-Target Kinase Activity, While Driving Potency and Aqueous Solubility. J Med Chem 2023. [PMID: 37314941 DOI: 10.1021/acs.jmedchem.3c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition. A focused library of known 3-(4-(2-(arylamino)pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitriles was evaluated as a molecular starting point. Structure-activity relationships (SARs) revealed a ligand-efficient (LE) JAK inhibitor series, amenable to aqueous solubility. Subsequent in vitro analysis indicated the potential for off-target toxicity. A KINOMEscan selectivity profile of 5 substantiated the likelihood of widespread series affinity across the human kinome. An sp2-to-sp3 drug design strategy was undertaken to attenuate off-target kinase activity while driving JAK-STAT potency and aqueous solubility. Tactics to reduce aromatic character, increase fraction sp3 (Fsp3), and bolster molecular complexity led to the azetidin-3-amino bridging scaffold in 31.
Collapse
Affiliation(s)
- Heeren M Gordhan
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Steven T Miller
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Daphne C Clancy
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Maria Ina
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Alan V McDougal
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - D'Quan K Cutno
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | - Robert V Brown
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| | | | | | - Kyle A Vick
- ID Business Solutions, Ltd., Boston, Massachusetts 02210, United States
| | | | | | - Jeffrey C White
- Baxter Healthcare Corp., Deerfield, Illinois 60015, United States
| | | | - David A Ellis
- Alcon Research, LLC, Durham, North Carolina 27703, United States
| |
Collapse
|
2
|
Cofas-Vargas LF, Mendoza-Espinosa P, Avila-Barrientos LP, Prada-Gracia D, Riveros-Rosas H, García-Hernández E. Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Front Pharmacol 2022; 13:1012008. [PMID: 36313289 PMCID: PMC9615146 DOI: 10.3389/fphar.2022.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to playing a central role in the mitochondria as the main producer of ATP, FOF1-ATP synthase performs diverse key regulatory functions in the cell membrane. Its malfunction has been linked to a growing number of human diseases, including hypertension, atherosclerosis, cancer, and some neurodegenerative, autoimmune, and aging diseases. Furthermore, inhibition of this enzyme jeopardizes the survival of several bacterial pathogens of public health concern. Therefore, FOF1-ATP synthase has emerged as a novel drug target both to treat human diseases and to combat antibiotic resistance. In this work, we carried out a computational characterization of the binding sites of the fungal antibiotic aurovertin in the bovine F1 subcomplex, which shares a large identity with the human enzyme. Molecular dynamics simulations showed that although the binding sites can be described as preformed, the inhibitor hinders inter-subunit communications and exerts long-range effects on the dynamics of the catalytic site residues. End-point binding free energy calculations revealed hot spot residues for aurovertin recognition. These residues were also relevant to stabilize solvent sites determined from mixed-solvent molecular dynamics, which mimic the interaction between aurovertin and the enzyme, and could be used as pharmacophore constraints in virtual screening campaigns. To explore the possibility of finding species-specific inhibitors targeting the aurovertin binding site, we performed free energy calculations for two bacterial enzymes with experimentally solved 3D structures. Finally, an analysis of bacterial sequences was carried out to determine conservation of the aurovertin binding site. Taken together, our results constitute a first step in paving the way for structure-based development of new allosteric drugs targeting FOF1-ATP synthase sites of exogenous inhibitors.
Collapse
Affiliation(s)
- Luis Fernando Cofas-Vargas
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
| | - Paola Mendoza-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | | | - Diego Prada-Gracia
- Unidad de Investigación en Biología Computacional y Diseño de Fármacos, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City, Mexico
| | - Enrique García-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- *Correspondence: Enrique García-Hernández,
| |
Collapse
|
3
|
Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics (Basel) 2022; 11:antibiotics11050557. [PMID: 35625201 PMCID: PMC9138118 DOI: 10.3390/antibiotics11050557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.
Collapse
|
4
|
Rácz A, Palkó R, Csányi D, Riedl Z, Bajusz D, Keserű GM. Consensus Virtual Screening Identified [1,2,4]Triazolo[1,5-b]isoquinolines As MELK Inhibitor Chemotypes. ChemMedChem 2022; 17:e202100569. [PMID: 34632716 PMCID: PMC9298037 DOI: 10.1002/cmdc.202100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 11/09/2022]
Abstract
Maternal Embryonic Leucine-zipper Kinase (MELK) is a current oncotarget involved in a diverse range of human cancers, with the usage of MELK inhibitors being explored clinically. Here, we aimed to discover new MELK inhibitor chemotypes from our in-house compound library with a consensus-based virtual screening workflow, employing three screening concepts. After careful retrospective validation, prospective screening and in vitro enzyme inhibition testing revealed a series of [1,2,4]triazolo[1,5-b]isoquinolines as a new structural class of MELK inhibitors, with the lead compound of the series exhibiting a sub-micromolar inhibitory activity. The structure-activity relationship of the series was explored by testing further analogs based on a structure-guided selection process. Importantly, the present work marks the first disclosure of the synthesis and bioactivity of this class of compounds.
Collapse
Affiliation(s)
- Anita Rácz
- Plasma Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Roberta Palkó
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
- Present affiliation: Organocatalysis Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Dorottya Csányi
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Zsuzsanna Riedl
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Dávid Bajusz
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
5
|
de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2022; 65:84-99. [PMID: 34928151 PMCID: PMC8762670 DOI: 10.1021/acs.jmedchem.1c01803] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.
Collapse
Affiliation(s)
- Iwan J. P. de Esch
- Division
of Medicinal Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel A. Erlanson
- Frontier
Medicines, 151 Oyster
Point Blvd., South San Francisco, California 94080, United States
| | - Wolfgang Jahnke
- Novartis
Institutes for Biomedical Research, Chemical
Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N. Johnson
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Louise Walsh
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
6
|
Marotta G, Basagni F, Rosini M, Minarini A. Role of Fyn Kinase Inhibitors in Switching Neuroinflammatory Pathways. Curr Med Chem 2021; 29:4738-4755. [PMID: 34939537 DOI: 10.2174/0929867329666211221153719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Fyn kinase is a member of the Src non-receptor tyrosine kinase family. Fyn is involved in multiple signaling pathways extending from cell proliferation and differentiation to cell adhesion and cell motility, and it has been found to be overexpressed in various types of cancers. In the central nervous system, Fyn exerts several different functions such as axon-glial signal transduction, oligodendrocyte maturation and myelination, and it is implicated in neuroinflammatory processes. Based on these premises, Fyn emerges as an attractive target in cancer and neurodegenerative disease therapy, particularly Alzheimer disease (AD), based on its activation by Aβ via cellular prion protein and its interaction with tau protein. However, Fyn is also a challenging target since the Fyn inhibitors discovered so far, due to the relevant homology of Fyn with other kinases, suffer from off-target effects. This review covers the efforts performed in the last decade to identify and optimize small molecules that effectively inhibit Fyn, both in enzymatic and in cell assays, including drug repositioning practices, as an opportunity of therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| |
Collapse
|
7
|
Bajusz D, Miranda-Quintana RA, Rácz A, Héberger K. Extended many-item similarity indices for sets of nucleotide and protein sequences. Comput Struct Biotechnol J 2021; 19:3628-3639. [PMID: 34257841 PMCID: PMC8253954 DOI: 10.1016/j.csbj.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Quantification of similarities between protein sequences or DNA/RNA strands is a (sub-)task that is ubiquitously present in bioinformatics workflows, and is usually accomplished by pairwise comparisons of sequences, utilizing simple (e.g. percent identity) or more intricate concepts (e.g. substitution scoring matrices). Complex tasks (such as clustering) rely on a large number of pairwise comparisons under the hood, instead of a direct quantification of set similarities. Based on our recently introduced framework that enables multiple comparisons of binary molecular fingerprints (i.e., direct calculation of the similarity of fingerprint sets), here we introduce novel symmetric similarity indices for analogous calculations on sets of character sequences with more than two (t) possible items (e.g. DNA/RNA sequences with t = 4, or protein sequences with t = 20). The features of these new indices are studied in detail with analysis of variance (ANOVA), and demonstrated with three case studies of protein/DNA sequences with varying degrees of similarity (or evolutionary proximity). The Python code for the extended many-item similarity indices is publicly available at: https://github.com/ramirandaq/tn_Comparisons.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | | | - Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Franco LS, Maia RC, Barreiro EJ. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (M PRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. RSC Med Chem 2021; 12:110-119. [PMID: 34046603 PMCID: PMC8130624 DOI: 10.1039/d0md00282h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
In December 2019, an infectious disease was detected in Wuhan, China, caused by a new pathogenic coronavirus, named SARS-CoV-2. It spread very rapidly, and on March 11th of 2020, the outbreak was declared a pandemic by the World Health Organization. Currently, effective treatment options remain limited. SARS-CoV-2 enzyme main protease (MPRO) plays a pivotal role in the viral life cycle, making it a putative drug target. In order to identify suitable hits to develop inhibitors with adequate antiviral properties, we explored the LASSBio Chemical Library employing multiple strategies of virtual screening. A fragment-based pharmacophore model enabled the identification of key interactions involved in the molecular recognition at the catalytic site of MPRO, namely, with amino acid residues His41, His163 and Glu166. Docking-based virtual screening was performed, leading to the identification of LASSBio-1945 (9), a new hit of MPRO, presenting an IC50 = 15.97 μM. This compound, an 1,3-benzodioxolyl sulfonamide, represents an interesting starting point for subsequent hit-to-lead optimization steps and, to the best of our knowledge, a new distinct chemotype for MPRO inhibition.
Collapse
Affiliation(s)
- Lucas S Franco
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Avenida Carlos Chagas Filho, 373, Ilha do Fundão 21941-912 Rio de Janeiro RJ Brazil
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Rodolfo C Maia
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Eliezer J Barreiro
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Avenida Carlos Chagas Filho, 373, Ilha do Fundão 21941-912 Rio de Janeiro RJ Brazil
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| |
Collapse
|
9
|
Chou CH, Hsu KC, Lin TE, Yang CR. Anti-Inflammatory and Tau Phosphorylation-Inhibitory Effects of Eupatin. Molecules 2020; 25:E5652. [PMID: 33266202 PMCID: PMC7731404 DOI: 10.3390/molecules25235652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD), which is among the most prevalent neurodegenerative diseases, manifests as increasing memory loss and cognitive decline. Tau phosphorylation and aggregation are strongly linked to neurodegeneration, as well as associated with chronic neuroinflammatory processes. The anti-inflammation effects of natural products have led to wide recognition of their potential for use in treating and preventing AD. This study investigated whether eupatin, a polymethoxyflavonoid found in Artemisia species, has inhibitory effects on neuroinflammation and tau phosphorylation. We treated mouse macrophages and microglia cells with lipopolysaccharides (LPSs) to activate inflammatory signals, and we treated neuronal cells with a protein phosphatase 2A inhibitor, okadaic acid (OA), or transfection with pRK5-EGFP-Tau P301L plasmid to induce tau phosphorylation. The results indicated that eupatin significantly reduced the LPS-induced protein expression and phosphorylation of p65 and inducible nitric oxide synthase as well as downstream products interleukin 6 and nitrite, respectively. Furthermore, eupatin markedly inhibited the expression of phospho-tau in response to OA treatment and plasmid transfection. We discovered that this inhibition was achieved through the inhibition of glycogen synthase kinase 3β (GSK3β), and molecular docking results suggested that eupatin can sufficiently bind to the GSK3β active site. Our results demonstrate that eupatin has neuroprotective effects, making it suitable for AD treatment.
Collapse
Affiliation(s)
- Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (K.-C.H.); (T.E.L.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (K.-C.H.); (T.E.L.)
- Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
| |
Collapse
|
10
|
Sydow D, Schmiel P, Mortier J, Volkamer A. KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination. J Chem Inf Model 2020; 60:6081-6094. [PMID: 33155465 DOI: 10.1021/acs.jcim.0c00839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. In this context, fragment-based drug design strategies have been successfully applied to develop novel kinase inhibitors. These strategies usually follow a knowledge-driven approach to optimize a focused set of fragments to a potent kinase inhibitor. Alternatively, KinFragLib explores and extends the chemical space of kinase inhibitors using data-driven fragmentation and recombination. The method builds on available structural kinome data from the KLIFS database for over 2500 kinase DFG-in structures cocrystallized with noncovalent kinase ligands. The computational fragmentation method splits the ligands into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers. The resulting fragment library consists of six subpocket pools with over 7000 fragments, available at https://github.com/volkamerlab/KinFragLib. KinFragLib offers two main applications: on the one hand, in-depth analyses of the chemical space of known kinase inhibitors, subpocket characteristics, and connections, and on the other hand, subpocket-informed recombination of fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments generated 6.7 million molecules. This combinatorial library contains, besides some known kinase inhibitors, more than 99% novel chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski's rule of five.
Collapse
Affiliation(s)
- Dominique Sydow
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Paula Schmiel
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jérémie Mortier
- Digital Technologies, Computational Molecular Design, Bayer AG, 13342 Berlin, Germany
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|