1
|
Zhang Y, Dong C, Ye Z, Hou Y, Ye S. Engineering space dimension and surface chemistry of MXene-based nanocomposite photocatalysts for sustainable environmental applications. Chem Commun (Camb) 2025; 61:7158-7177. [PMID: 40302431 DOI: 10.1039/d5cc00587f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
It is very urgent to solve the environmental pollution problem. MXene-based composite photocatalysts show great promise, and utilize solar energy for purification. MXenes have excellent electrical conductivity, a large surface area due to their 2D structure, and surface functional groups beneficial for photocatalysis. In this review, various synthesis methods to prepare MXenes with different properties for specific applications have been reviewed, such as hydrofluoric acid etching, substitute etching and molten fluoride etching. The influence of different groups on the performance of MXenes has been investigated. Modification strategies including heterojunction construction, doping, precious metal deposition and single atom anchoring have been explored to enhance the photocatalytic performance of MXene-based composites in photocatalytic reactions. It is found that MXenes can act as supports that limit photocatalyst size, enhance reactant adsorption, and function as cocatalysts loaded onto semiconductors to improve charge separation. Our perspectives on the key challenges and future directions of developing high-performance MXene-based composite photocatalysts for environmental applications are elaborated.
Collapse
Affiliation(s)
- Yan Zhang
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanhui Dong
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
| | - Zi Ye
- Chongben College, Ocean University of China, Qingdao, Shandong, China
| | - Yang Hou
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
| | - Sheng Ye
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Purbayanto MAK, Chandel M, Bury D, Wójcik A, Moszczyńska D, Tabassum A, Mochalin VN, Naguib M, Jastrzębska AM. Microwave-Assisted Hydrothermal Synthesis of Photocatalytic Truncated-Bipyramidal TiO 2/Ti 3CN Heterostructures Derived from Ti 3CN MXene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21547-21558. [PMID: 39363639 PMCID: PMC11483757 DOI: 10.1021/acs.langmuir.4c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
TiO2/MXene heterostructure has garnered significant interest as a photocatalyst due to its large surface area and efficient charge carrier separation at the interface. However, current synthesis methods produce TiO2 without clear crystal faceting and often require complicated postprocessing step, limiting its practical applications. We demonstrate a facile and controlled microwave-assisted hydrothermal synthesis for transforming multilayered Ti3CN MXene to a truncated-bipyramidal TiO2/Ti3CN heterostructure. The resulting TiO2 nanocrystals at the Ti3CN surface exhibited crystalline anatase truncated bipyramids, exposing {001} and {101} facets. We further tailored an indirect optical band gap of the TiO2/Ti3CN heterostructure in the range of 3.17-3.23 eV by varying the hydrothermal synthesis time from 15 min to 5 h at a fixed temperature of 160 °C. Efficient charge separation allowed us to decompose 97% of methylene blue (MB) within 30 min of ultraviolet (UV) light irradiation, ∼3.9-fold faster than the benchmark P25, higher than any other TiO2/MXene heterostructures. With simulated white light, we achieved over 60% efficiency of the dye decomposition within 2 h of irradiation, which resulted in 1.5-fold faster kinetics than P25. We also observed a similar excellent performance of Ti3CN-derived TiO2 in decomposing various persistent synthetic dyes, including commercial textile dye, methyl orange, and rhodamine B. In conclusion, our study provides a strategy for utilizing MXene chemical reactivity to produce highly crystalline optically active TiO2/Ti3CN heterostructure. The developed heterostructure can serve as an efficient photocatalyst for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Abiyyu Kenichi Purbayanto
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Wołoska 141, Warsaw 02-507, Poland
- Faculty
of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw 02-525, Poland
| | - Madhurya Chandel
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Wołoska 141, Warsaw 02-507, Poland
- Faculty
of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw 02-525, Poland
| | - Dominika Bury
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Wołoska 141, Warsaw 02-507, Poland
- Faculty
of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw 02-525, Poland
| | - Anna Wójcik
- Polish
Academy of Sciences, Institute of Metallurgy and Materials Science, W. Reymonta 25, Cracow 30-059, Poland
| | - Dorota Moszczyńska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Anika Tabassum
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Vadym N. Mochalin
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
- Department
of Materials Science and Engineering, Missouri
University of Science and Technology, Rolla, Missouri 65409, United States
| | - Michael Naguib
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Agnieszka Maria Jastrzębska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Wołoska 141, Warsaw 02-507, Poland
- Faculty
of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw 02-525, Poland
| |
Collapse
|
3
|
Nemamcha HE, Vu NN, Tran DS, Boisvert C, Nguyen DD, Nguyen-Tri P. Recent progression in MXene-based catalysts for emerging photocatalytic applications of CO 2 reduction and H 2 production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172816. [PMID: 38679090 DOI: 10.1016/j.scitotenv.2024.172816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The development of advanced materials for efficient photocatalytic H2 production and CO2 reduction is highly recommended for addressing environmental issues and producing clean energy sources. Specifically, MXenes have emerged as two-dimensional (2D) materials extensively used as high-performance cocatalysts in photocatalyst systems owing to their outstanding features of structure and properties such as high conductivity, large specific surface area, and abundant active sites. Nevertheless, there is a lack of deep and systematic studies concerning the application of these emerging materials for CO2 reduction reaction (CRR) and H2 production (HER). This review first outlines the essential features of MXenes, encompassing the synthesis methods, composition, surface terminations, and electronic properties, which make them highly active as cocatalysts. It then examines the recent progress in MXene-based photocatalysts, emphasizing the synergy achieved by coupling MXenes as co-catalysts with semiconductors, utilizing MXenes as a support for the consistent growth of photocatalysts, leading to finely dispersed nanoparticles, and exploiting MXene as exceptional precursors for creating MXene/metal oxide photocomposite. The roles of engineering surface terminations of MXene cocatalysts, MXene quantum dots (QDs), and distinctive morphologies in MXenes-based photocatalyst systems to enhance photocatalytic activity for both HER and CRR have been explored both experimentally and theoretically using DFT calculations. Challenges and prospects for MXene-based photocatalysts are also addressed. Finally, suggestions for further research and development of effective and economical MXenes/semiconductors strategies are proposed. This comprehensive review article serves as a valuable reference for researchers for applying MXenes in photocatalysis.
Collapse
Affiliation(s)
- Houssam-Eddine Nemamcha
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Son Tran
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
| |
Collapse
|
4
|
Wong KJ, Foo JJ, Siang TJ, Khoo V, Ong W. Harnessing the Power of Light: The Synergistic Effects of Crystalline Carbon Nitride and Ti 3C 2T x MXene in Photocatalytic Hydrogen Production. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300235. [PMID: 38868601 PMCID: PMC11165523 DOI: 10.1002/gch2.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-C3N4 possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-C3N4 and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency. To achieve this, metal-like Ti3C2Tx is integrated with crystalline g-C3N4 via a combined salt-assisted and freeze-drying approach to form crystalline g-C3N4/Ti3C2Tx (CCN/TCT) hybrids with different Ti3C2Tx loading amounts (0, 0.2, 0.3, 0.4, 0.5, 1, 5, 10 wt.%). Benefiting from the crystallization of CN, as evidenced by the XRD graph, and the marvelous conductivity of Ti3C2Tx supported by EIS plots, CCN/TCT/Pt loaded with 0.5 wt.% Ti3C2Tx displays an elevated H2 (2) should be subscripted evolution rate of 2651.93 µmol g-1 h-1 and a high apparent quantum efficiency of 7.26% (420 nm), outperforming CN/Pt, CCN/Pt, and other CCN/TCT/Pt hybrids. The enhanced performance is attributed to the synergistic effect of the highly crystalline structure of CCN that enables fleet charge transport and the efficient dual cocatalysts, Ti3C2Tx and Pt, that foster charge separation and provide plentiful active sites. This work demonstrates the potential of CCN/TCT as a promising material for hydrogen production, suggesting a significant advancement in the design of CCN heterostructures for effective photocatalytic systems.
Collapse
Affiliation(s)
- Khai Jie Wong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Joel Jie Foo
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Tan Ji Siang
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Valerine Khoo
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
| | - Wee‐Jun Ong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangorSelangor Darul Ehsan43900Malaysia
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Gulei Innovation InstituteXiamen UniversityZhangzhou363200China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518057China
| |
Collapse
|
5
|
Bai X, Dao X, Wang Q, Xing J, Wang T, Huang X, Hao H. In-situ synthesized 2D MXene/TiO 2/Fe hybrid with (001)-(101) surface heterojunction for degradation of tetracycline under visible light. CHEMOSPHERE 2023; 338:139546. [PMID: 37478998 DOI: 10.1016/j.chemosphere.2023.139546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Tetracycline (TC) as a common antibiotic has adverse effects on human healthy and biological survival. In this study, a novel MXene/TiO2/Fe hybrid was designed and successfully synthesized by combination method of calcination and hydrothermal reduction. The photocatalysts were characterized by PXRD, SEM, TEM, VSM and XPS, etc. It was found that MXene/TiO2/Fe exhibited 2D multilayer structure like MXene. The in-situ synthesized TiO2 through calcinating MXene exhibited an octahedral biconical structure with exposed (001) and (101) facets. Surface heterojunction of (001) and (101) facets was formed within TiO2, which enhanced the separation of photogenerated electrons and holes. The residual MXene could play a role in co-catalyst to capture the photo-generated electrons from TiO2. Moreover, Fe nanoparticles not only optimize the band gap structure and increase the specific surface area, but also store the electrons as a good electrons acceptor, which further promote the separation of electrons and holes. The TC removal efficiency of optimal MXene/TiO2/Fe could reach 92% within 120 min. Moreover, the influence of external environment factors such as pH, catalyst dosages and common anions were investigated in detail. Mechanism analysis show that h+, •OH and •O2- are the main active substances. Finally, the degradation pathways were proposed according to LC-MS.
Collapse
Affiliation(s)
- Xue Bai
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuan Dao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qin Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiangna Xing
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China; School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Qin X, Ji Y, Nong L, Wang C, Li H, Xie C, Ji L, Zhu A. Oxygen vacancy-rich C/Ti3C2/(001)TiO2 hollow microspheres and the photocatalytic degradation of organic pollutants. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Sukidpaneenid S, Chawengkijwanich C, Pokhum C, Isobe T, Opaprakasit P, Sreearunothai P. Multi-function adsorbent-photocatalyst MXene-TiO 2 composites for removal of enrofloxacin antibiotic from water. J Environ Sci (China) 2023; 124:414-428. [PMID: 36182149 DOI: 10.1016/j.jes.2021.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
MXenes, a new family of two-dimensional transition metal carbides or nitrides, have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity, hydrophilicity, and ion intercalability. In this work, Ti3C2 MXene, or MX, is converted to MX-TiO2 composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO2 particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO2 composites. The composites were used for enrofloxacin (ENR), a frequently found contaminating antibiotic, removal from water. The relative amount of the MX and TiO2 can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties. NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well. Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure, improving ENR adsorption greatly from 1 to 6 mg ENR/g composite. It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO2 particles on the structure. MX-TiO2/NaCl composites, which have sodium intercalated in their structures, showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content. Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles, leading to high photocatalytic degradation efficiency. This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds.
Collapse
Affiliation(s)
- Siwanat Sukidpaneenid
- TAIST-Tokyo Tech Program, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Chamorn Chawengkijwanich
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonlada Pokhum
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Toshihiro Isobe
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Paiboon Sreearunothai
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand.
| |
Collapse
|
8
|
Guo H, Niu HY, Wang WJ, Wu Y, Xiong T, Chen YR, Su CQ, Niu CG. Schottky barrier height mediated Ti3C2 MXene based heterostructure for rapid photocatalytic water disinfection: Antibacterial efficiency and reaction mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Kumar A, Singla Y, Sharma M, Bhardwaj A, Krishnan V. Two dimensional S-scheme Bi 2WO 6-TiO 2-Ti 3C 2 nanocomposites for efficient degradation of organic pollutants under natural sunlight. CHEMOSPHERE 2022; 308:136212. [PMID: 36041524 DOI: 10.1016/j.chemosphere.2022.136212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) materials have fascinated the researchers to exploit their properties including large surface area, ability to act as a support and to form face-to-face interfacial contact with other 2D materials for fabricating efficient photocatalytic materials. In this work, Bi2WO6, TiO2 and Ti3C2 nanosheets have been used synthesizing different series of binary Bi2WO6-TiO2 and ternary Bi2WO6-TiO2-Ti3C2 2D nanocomposites by an electrostatic self-assembly synthesis route. The as-prepared pristine materials and binary and ternary nanocomposites were characterized by different structural, morphological and compositional characterization techniques to confirm their successful synthesis and 2D morphology. It was found that the optimized Bi2WO6-TiO2 (20 wt%) and Bi2WO6-TiO2 (20 wt%)-Ti3C2 (5 wt%) nanocomposites showed 97.0% and 98.5% degradation of methyl green in 80 min and 40 min, respectively, which was higher than their pristine counterparts. The enhanced activity was credited to the large surface area offered by 2D nanocomposites, pollutant adsorption and enhanced photogenerated charge separation and transfer facilitated by S-scheme mechanism and face-to-face interfacial contact of different components of these nanocomposites. This work delivers an example of highly efficient 2D nanocomposites and discusses the role of Ti3C2 as an electron acceptor in S-scheme photocatalytic system.
Collapse
Affiliation(s)
- Ashish Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India; Department of Chemistry, Sardar Patel University Mandi, Mandi, 175001, Himachal Pradesh, India
| | - Yash Singla
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Akhil Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
10
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Facile Preparation of Highly Active CO2 Reduction (001)TiO2/Ti3C2Tx Photocatalyst from Ti3AlC2 with Less Fluorine. Catalysts 2022. [DOI: 10.3390/catal12070785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To date, (001)TiO2/Ti3C2Tx hybridized photocatalyst is usually prepared through the complicated treatment of Ti3AlC2 in the presence of corrosive fluorine with a molar ratio of nF:nTi of more than 20. To reduce the use of corrosive fluorine, herein, exploiting beyond the conventional method, we report a facile synthetic method for (001)TiO2/Ti3C2Tx, elaborately using HF as both an etchant for Al elimination and a morphology control agent for the growth of (001)TiO2 nanosheets, with a sharply diminished use of fluorine (nF:nTi = 4:1) and simplified operation procedures. After optimization, the resulting (001)TiO2/Ti3C2Tx heterojunction exhibited markedly high photocatalytic activity with the CO2 reduction rate of 13.45 μmol g−1 h−1, which even surpasses that of P25 (10.95 μmol g−1 h−1), while the photoelectron selectivity to CH4 is approaching 92.84%. The superior photoactivity is interpreted as the fact that Ti3C2Tx with a lower work function induces photoinduced hole transfer and suppresses the charge recombination, thus facilitating the CO2 multi-electron reduction. This study provides a novel and simple synthesis for (001)TiO2/Ti3C2Tx towards sustainable energy transformations.
Collapse
|
12
|
Kuchmiy SY, Shvalagin VV. 2D Metal Carbides as Components of Photocatalytic Systems for Hydrogen Production: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhang S, Dai M, Guo J, Wang G, Wang S, He Z. Stable Ti3+ in B-TiO2/BN Based Hybrids for Efficient Photocatalytic Reduction. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Liu Z, Zhou Y, Yang L, Yang R. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Chen X, Shi Z, Tian Y, Lin P, Wu D, Li X, Dong B, Xu W, Fang X. Two-dimensional Ti 3C 2 MXene-based nanostructures for emerging optoelectronic applications. MATERIALS HORIZONS 2021; 8:2929-2963. [PMID: 34558566 DOI: 10.1039/d1mh00986a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since the first discovery of Ti3C2 in 2011, two-dimensional (2D) transition-metal carbides, carbonitrides and nitrides, known as MXenes, have attracted significant attention. Due to their outstanding electronic, optical, mechanical, and thermal properties, versatile structures and surface chemistries, Ti3C2 MXenes have emerged as new candidates with great potential for applications in optoelectronic devices, such as photovoltaics, photodetectors and photoelectrochemical devices. The excellent metallic conductivity, high anisotropic carrier mobility, good structural and chemical stabilities, high optical transmittance, excellent mechanical strength, tunable work functions, and wide range of optical absorption properties of Ti3C2 MXene nanostructures are the key to their success in a number of electronic and photonic device applications. Herein, we summarize the fundamental properties and preparation of pure Ti3C2 MXenes, functionalized Ti3C2 MXenes and their hybrid nanocomposites, as well as their optoelectronic applications. In the end, the perspective and current challenges of Ti3C2 MXenes toward the development of advanced MXene-based nanostructures are briefly discussed for future optoelectronic applications.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhifeng Shi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Yongtao Tian
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Pei Lin
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Di Wu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
16
|
Feng X, Yu Z, Sun Y, Shan M, Long R, Li X. 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Bai X, Hou S, Wang X, Hao D, Sun B, Jia T, Shi R, Ni BJ. Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00803j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proposed scheme of the surface and interface engineering to improve the charge separation efficiency of MXene-based photocatalysts.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Shanshan Hou
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Xuyu Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| | - Boxuan Sun
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| |
Collapse
|
18
|
Li K, Zhang S, Li Y, Fan J, Lv K. MXenes as noble-metal-alternative co-catalysts in photocatalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63630-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang J, Anasori B, Seh ZW. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS NANO 2020; 14:10834-10864. [PMID: 32790329 DOI: 10.1021/acsnano.0c05482] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian Wyatt
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
20
|
Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Xiao N, Li S, Li X, Ge L, Gao Y, Li N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63469-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|