1
|
DuBois DB, Rivera I, Liu Q, Yu B, Singewald K, Millhauser GL, Saltikov C, Chen S. Photocatalytic Generation of Singlet Oxygen by Graphitic Carbon Nitride for Antibacterial Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3787. [PMID: 39124449 PMCID: PMC11313655 DOI: 10.3390/ma17153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Carbon-based functional nanocomposites have emerged as potent antimicrobial agents and can be exploited as a viable option to overcome antibiotic resistance of bacterial strains. In the present study, graphitic carbon nitride nanosheets are prepared by controlled calcination of urea. Spectroscopic measurements show that the nanosheets consist of abundant carbonyl groups and exhibit apparent photocatalytic activity under UV photoirradiation towards the selective production of singlet oxygen. Therefore, the nanosheets can effectively damage the bacterial cell membranes and inhibit the growth of bacterial cells, such as Gram-negative Escherichia coli, as confirmed in photodynamic, fluorescence microscopy, and scanning electron microscopy measurements. The results from this research highlight the unique potential of carbon nitride derivatives as potent antimicrobial agents.
Collapse
Affiliation(s)
- Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Isabelle Rivera
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Bingzhe Yu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Kevin Singewald
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA;
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA; (D.B.D.); (I.R.); (Q.L.); (B.Y.); (K.S.); (G.L.M.)
| |
Collapse
|
2
|
Rosato R, Santarelli G, Augello A, Perini G, De Spirito M, Sanguinetti M, Papi M, De Maio F. Exploration of the Graphene Quantum Dots-Blue Light Combination: A Promising Treatment against Bacterial Infection. Int J Mol Sci 2024; 25:8033. [PMID: 39125603 PMCID: PMC11312127 DOI: 10.3390/ijms25158033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene Quantum Dots (GQDs) have shown the potential for antimicrobial photodynamic treatment, due to their particular physicochemical properties. Here, we investigated the activity of three differently functionalized GQDs-Blue Luminescent GQDs (L-GQDs), Aminated GQDs (NH2-GQDs), and Carboxylated GQDs (COOH-GQDs)-against E. coli. GQDs were administrated to bacterial suspensions that were treated with blue light. Antibacterial activity was evaluated by measuring colony forming units (CFUs) and metabolic activities, as well as reactive oxygen species stimulation (ROS). GQD cytotoxicity was then assessed on human colorectal adenocarcinoma cells (Caco-2), before setting in an in vitro infection model. Each GQD exhibits antibacterial activity inducing ROS and impairing bacterial metabolism without significantly affecting cell morphology. GQD activity was dependent on time of exposure to blue light. Finally, GQDs were able to reduce E. coli burden in infected Caco-2 cells, acting not only in the extracellular milieu but perturbating the eukaryotic cell membrane, enhancing antibiotic internalization. Our findings demonstrate that GQDs combined with blue light stimulation, due to photodynamic properties, have a promising antibacterial activity against E. coli. Nevertheless, we explored their action mechanism and toxicity on epithelial cells, fixing and standardizing these infection models.
Collapse
Affiliation(s)
- Roberto Rosato
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Santarelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Maurizio Sanguinetti
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Deng T, Lu W, Zhao X, Wang H, Zheng Y, Zheng A, Shen Z. Chondroitin sulfate/silk fibroin hydrogel incorporating graphene oxide quantum dots with photothermal-effect promotes type H vessel-related wound healing. Carbohydr Polym 2024; 334:121972. [PMID: 38553198 DOI: 10.1016/j.carbpol.2024.121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
Chronic wounds with bacterial infection present formidable clinical challenges. In this study, a versatile hydrogel dressing with antibacterial and angiogenic activity composite of silk fibroin (SF), chondroitin sulfate (CS), and graphene oxide quantum dots (GOQDs) is fabricated. GOQDs@SF/CS (GSC) hydrogel is rapidly formed through the enzyme catalytic action of horseradish peroxidase. With the incorporation of GOQDs both gelation speed and mechanical properties have been enhanced, and the photothermal characteristics of GOQDs in GSC hydrogel enabled bacterial killing through photothermal treatment (PTT) at ∼51 °C. In vitro studies show that the GSC hydrogels demonstrate excellent antibacterial performance and induce type H vessel differentiation of endothelial cells via the activated ERK1/2 signaling pathway and upregulated SLIT3 expression. In vivo results show that the hydrogel significantly promotes type H vessels formation, which is related to the collagen deposition, epithelialization and, ultimately, accelerates the regeneration of infected skin defects. Collectively, this multifunctional GSC hydrogel, with dual action of antibacterial efficacy and angiogenesis promotion, emerges as an innovative skin dressing with the potential for advancing in infected wound healing.
Collapse
Affiliation(s)
- Tanjun Deng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenli Lu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoxian Zhao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Haoyu Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yumeng Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Zhengyu Shen
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
4
|
Zhang P, Zheng Y, Ren L, Li S, Feng M, Zhang Q, Qi R, Qin Z, Zhang J, Jiang L. The Enhanced Photoluminescence Properties of Carbon Dots Derived from Glucose: The Effect of Natural Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:970. [PMID: 38869595 PMCID: PMC11174097 DOI: 10.3390/nano14110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
The investigation of the fluorescence mechanism of carbon dots (CDs) has attracted significant attention, particularly the role of the oxygen-containing groups. Dual-CDs exhibiting blue and green emissions are synthesized from glucose via a simple ultrasonic treatment, and the oxidation degree of the CDs is softly modified through a slow natural oxidation approach, which is in stark contrast to that aggressively altering CDs' surface configurations through chemical oxidation methods. It is interesting to find that the intensity of the blue fluorescence gradually increases, eventually becoming the dominant emission after prolonging the oxidation periods, with the quantum yield (QY) of the CDs being enhanced from ~0.61% to ~4.26%. Combining the microstructure characterizations, optical measurements, and ultrafiltration experiments, we hypothesize that the blue emission could be ascribed to the surface states induced by the C-O and C=O groups, while the green luminescence may originate from the deep energy levels associated with the O-C=O groups. The distinct emission states and energy distributions could result in the blue and the green luminescence exhibiting distinct excitation and emission behaviors. Our findings could provide new insights into the fluorescence mechanism of CDs.
Collapse
Affiliation(s)
- Pei Zhang
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Yibo Zheng
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Linjiao Ren
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Shaojun Li
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Ming Feng
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Qingfang Zhang
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Rubin Qi
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Zirui Qin
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Jitao Zhang
- Henan Key Lab of Information-Based Electrical Appliances, College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (P.Z.); (Y.Z.); (S.L.); (M.F.); (Q.Z.); (R.Q.); (Z.Q.); (J.Z.)
| | - Liying Jiang
- School of Electronics and Information, Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, No. 136 Ke Xue Avenue, Zhengzhou 450002, China
| |
Collapse
|
5
|
Singh P, Farheen, Sachdev S, Manori S, Bhardwaj S, Chitme H, Sharma A, Raina KK, Shukla RK. Graphene quantum dot doped viscoelastic lyotropic liquid crystal nanocolloids for antibacterial applications. SOFT MATTER 2023; 19:6589-6603. [PMID: 37605525 DOI: 10.1039/d3sm00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Graphene quantum dots (GQDs) are prepared and characterized via X-ray diffraction (XRD), UV-Visible spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL). GQDs are doped (5 mg and 10 mg) in the lyotropic liquid crystalline (LLC) lamellar and hexagonal phases to prepare GQD/LLC nanocolloids. Polarizing optical microscopy and X-ray diffraction measurement reveals that GQDs do not affect the lamellar and hexagonal LLC structures and may organize on their interface. Pure LLC phases and nanocolloids are studied for steady and dynamic rheological behavior. LLC phases and GQD/LLC nanocolloids possess shear thinning and frequency dependent liquid viscoelastic behavior. A complex moduli study of LLCs and GQD/LLC nanocolloids is carried out which indicates the gel to viscous transition in LLCs and GQD/LLC nanocolloids as a function of frequency. LLC phases and GQD/LLC nanocolloids are tested for antibacterial activity against Listeria ivanovii. The effect of surfactant concentration, LLC phase geometry and GQD concentration has been studied and discussed. A probable mechanism for the strong antimicrobial activity of LLCs and GQD/LLC nanocolloids is presented considering intermolecular interactions. The viscoelastic behavior and strong antibacterial activity (inhibition zone 49.2 mm) of LLCs and GQD/LLC nanocolloids make them valuable candidates for lubrication, cleaning, cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Prayas Singh
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Farheen
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana, 122103, India
| | - Surbhi Sachdev
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Samta Manori
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Sumit Bhardwaj
- Department of Physics, Chandigarh University, Chandigarh, 140413, India
| | - Havagiray Chitme
- School of Pharmaceutical & Populations Health Informatics, Department of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Sharma
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | | | - Ravi K Shukla
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| |
Collapse
|
6
|
Nichols F, Ozoemena KI, Chen S. Electrocatalytic generation of reactive species and implications in microbial inactivation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Agrawal N, Bhagel D, Mishra P, Prasad D, Kohli E. Post-synthetic modification of graphene quantum dots bestows enhanced biosensing and antibiofilm ability: efficiency facet. RSC Adv 2022; 12:12310-12320. [PMID: 35480352 PMCID: PMC9027252 DOI: 10.1039/d2ra00494a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Graphene quantum dots (GQDs) are a luminescent class of carbon nanomaterials with a graphene-like core structure, possessing quantum confinement and edge effects. They have gained importance in the biological world due to their inherent biocompatibility, good water dispersibility, excellent fluorescence and photostability. The improved properties of GQDs require the logical enactment of functional groups, which can be easily attained through post-synthetic non-covalent routes of modification. In this regard, the present work has for the first time employed a simple one-pot post-modification method utilizing the salt of amino caproic acid, an FDA approved reagent. The adsorption of the modifier on GQDs with varying weight ratios is characterized through DLS, zeta potential, Raman, absorption and fluorescence spectroscopy. A decrease of 20% in the fluorescence intensity with an increase in the modifier ratio from 1 to 1000 and an increased DLS size as well as zeta potential demonstrate the efficient modification as well as higher stability of the modified GQDs. The modified GQDs with a high weight ratio (1 : 100) of the modifier showed superior ability to sense dopamine, a neurotransmitter, as well as competent biofilm degradation ability. The modified GQDs could sense more efficiently than pristine GQDs, with a sensitivity as low as 0.06 μM (limit of detection) and 90% selectivity in the presence of other neurotransmitters. The linear relationship showed a decrease in the fluorescence intensity with increasing dopamine concentration from 0.0625 μM to 50 μM. Furthermore, the efficiency of the modified GQDs was also assessed in terms of their antibiofilm effect against Staphylococcus aureus. The unmodified GQDs showed only 10% disruption of the adhered bacterial colonies, while the modified GQDs (1 : 100) showed significantly more than 60% disruption of the biofilm, presenting the competency of the modified GQDs. The unique modifications of GQDs have thus proven to be an effective method for the proficient utilization of zero-dimensional carbon nanomaterials for biosensing, bioimaging, antibacterial and anti-biofilm applications.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| | - Dolly Bhagel
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| | - Priyanka Mishra
- Department of Immunomodulation, DIPAS, DRDO New Delhi-110045 India
| | - Dipti Prasad
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| | - Ekta Kohli
- Department of Neurobiobiology, DIPAS, DRDO New Delhi 110045 India
| |
Collapse
|
8
|
Tshangana CS, Muleja AA, Kuvarega AT, Mamba BB. The synergistic effect of peracetic acid activated by graphene oxide quantum dots in the inactivation of E. coli and organic dye removal with LED reactor light. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:268-281. [PMID: 35354352 DOI: 10.1080/10934529.2022.2056385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This study presents a low-impact process that uses the synergy of peracetic acid (PAA) and graphene oxide quantum GQDs to degrade poorly biodegradable organic compounds and potentially substitute chlorination in wastewater treatment. The role of GQDs in GQDs/PAA activity and the effect of GQDs loading were examined. The results showed that increasing GQDs loading in the GQDs/PAA system greatly improved the photodegradation efficiency. Conversely, increasing the PAA concentration slightly enhanced efficiency due to few active sites being available. GQDs acted as catalysts and radical scavenging experiments confirmed that the degradation occurred via generation of hydroxyl (•OH) and peroxy (CH3C(=O)OO•)) radicals. A probable degradation mechanism of the organic dye was presented based on the reaction by-products detected after HPLC-MS studies. The E. coli inactivation mechanism was elucidated by monitoring the morphological changes of E. coli using scanning microscopy. The proposed antimicrobial mechanism includes the initial diffusion of PAA through the cell membrane which caused damage and induced cellular matter leakage, resulting in cell death. Bacterial regrowth studies confirmed GQDs/PAA were able to bypass the natural mechanisms of microorganisms that enables them to repair any damages in their DNA.
Collapse
Affiliation(s)
- Charmaine Sesethu Tshangana
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Adolph Anga Muleja
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Park, Roodepoort, South Africa
| |
Collapse
|
9
|
Mohammad‐Rezaei R, Abbas‐Zadeh J, Golmohammadpour M, Hosseinzadeh E. Simultaneous Electrodeposition of Reduced Graphene Quantum Dots/Copper Oxide Nanocomposite on the Surface of Carbon Ceramic Electrode for the Electroanalysis of Adenine and Guanine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rahim Mohammad‐Rezaei
- Electrochemistry Research Lab. Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz Iran
| | - Javad Abbas‐Zadeh
- Electrochemistry Research Lab. Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz Iran
| | - Mahdi Golmohammadpour
- Electrochemistry Research Lab. Faculty of Basic Sciences Azarbaijan Shahid Madani University Tabriz Iran
| | - Elyas Hosseinzadeh
- Department of Laboratory Sciences Sirjan School of Medical Sciences 7816883333 Sirjan Iran
| |
Collapse
|
10
|
Chata G, Nichols F, Mercado R, Assafa T, Millhauser GL, Saltikov C, Chen S. Photodynamic Activity of Graphene Oxide/Polyaniline/Manganese Oxide Ternary Composites toward Both Gram-Positive and Gram-Negative Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:7025-7033. [PMID: 35006935 PMCID: PMC8881958 DOI: 10.1021/acsabm.1c00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Graphene derivatives have been attracting extensive interest as effective antimicrobial agents. In the present study, ternary nanocomposites are prepared based on graphene oxide quantum dots (GOQD), polyaniline (PANI), and manganese oxides. Because of the hydrophilic GOQD and PANI, the resulting GPM nanocomposites are readily dispersible in water and upon photoirradiation at 365 nm exhibit antimicrobial activity toward both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus epidermidis (S. epidermidis). Notably, the nanocomposite with a high Mn2+ and Mn4+ content is found to be far more active than that with a predominant Mn3+ component, although both samples feature a similar elemental composition and average Mn valence state. The bactericidal activity is largely ascribed to the photocatalytic production of hydroxy radicals and photogenerated holes; both are known to exert oxidative stress on bacterial cells. Further antimicrobial contributions may arise from the strong affinity of the nanocomposites to the cell surfaces. These results suggest that the metal valence state may be a critical parameter in the design and engineering of high-performance antimicrobial agents based on metal oxide nanocomposites.
Collapse
Affiliation(s)
- Gustavo Chata
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Rene Mercado
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Tufa Assafa
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
11
|
Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Graphene quantum dots (GQDs) have been widely investigated in recent years due to their outstanding physicochemical properties. Their remarkable characteristics allied to their capability of being easily synthesized and combined with other materials have allowed their use as electrochemical sensing platforms. In this work, we survey recent applications of GQDs-based nanocomposites in electrochemical sensors and biosensors. Firstly, the main characteristics and synthesis methods of GQDs are addressed. Next, the strategies generally used to obtain the GQDs nanocomposites are discussed. Emphasis is given on the applications of GQDs combined with distinct 0D, 1D, 2D nanomaterials, metal-organic frameworks (MOFs), molecularly imprinted polymers (MIPs), ionic liquids, as well as other types of materials, in varied electrochemical sensors and biosensors for detecting analytes of environmental, medical, and agricultural interest. We also discuss the current trends and challenges towards real applications of GQDs in electrochemical sensors.
Collapse
|
12
|
Nichols F, Lu JE, Mercado R, Rojas-Andrade MD, Ning S, Azhar Z, Sandhu J, Cazares R, Saltikov C, Chen S. Antibacterial Activity of Nitrogen-Doped Carbon Dots Enhanced by Atomic Dispersion of Copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11629-11636. [PMID: 32924514 DOI: 10.1021/acs.langmuir.0c02293] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance is an imminent threat to human health, requiring the development of effective alternate antibacterial agents. One such alternative includes nanoparticle (photo)catalysts that are good at producing reactive oxygen species (ROS). Herein, we report the design and preparation of nitrogen-doped carbon dots functionalized with atomically dispersed copper centers by Cu-N coordination (Cu/NCD) that exhibit apparent antibacterial activity toward Gram-negative Escherichia coli (E. coli) under photoirradiation. The growth of E. coli cells is found to be markedly inhibited by Cu/NCD under 365 nm photoirradiation, whereas no apparent inhibition is observed in the dark or with the copper-free carbon dots alone. This is ascribed to the prolonged photoluminescence lifetime of Cu/NCD that facilitates the separation of photogenerated electron-hole pairs and ROS formation. The addition of tert-butyl alcohol is found to completely diminish the antimicrobial activity, suggesting that hydroxyl radicals are responsible for microbial death. Consistent results are obtained from fluorescence microscopic studies using CellROX green as the probe. Similar bactericidal behaviors are observed with Gram-positive Staphylococcus epidermidis (S. epidermidis). The copper content within the carbon material is optimized at a low loading of 1.09 wt %, reducing the possibility of toxic copper-ion leaching. Results from this study highlight the significance of carbon-based nanocomposites with isolated metal species as potent antimicrobial reagents.
Collapse
Affiliation(s)
- Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Jia En Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Rene Mercado
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Mauricio D Rojas-Andrade
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shunlian Ning
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zahra Azhar
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Jasleen Sandhu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Rafael Cazares
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|