1
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
2
|
Chen P, Zhang P, Shah NH, Cui Y, Wang Y. A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy. Int J Mol Sci 2023; 24:12001. [PMID: 37569377 PMCID: PMC10418994 DOI: 10.3390/ijms241512001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging non-invasive cancer treatment method in the field of nanomedicine, which has the advantages of deep penetration, good therapeutic efficacy, and minimal damage to normal tissues. Sonosensitizers play a crucial role in the process of SDT, as their structure and properties directly determine the treatment outcome. Inorganic sonosensitizers, with their high stability and longer circulation time in the human body, have great potential in SDT. In this review, the possible mechanisms of SDT including the ultrasonic cavitation, reactive oxygen species generation, and activation of immunity are briefly discussed. Then, the latest research progress on inorganic sonosensitizers is systematically summarized. Subsequently, strategies for optimizing treatment efficacy are introduced, including combination therapy and image-guided therapy. The challenges and future prospects of sonodynamic therapy are discussed. It is hoped that this review will provide some guidance for the screening of inorganic sonosensitizers.
Collapse
Affiliation(s)
- Peng Chen
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ping Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Navid Hussain Shah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (P.C.); (P.Z.); (N.H.S.)
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
3
|
|
4
|
Liu Y, Wang Y, Song S, Zhang H. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103936. [PMID: 34596931 DOI: 10.1002/adma.202103936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Indexed: 05/23/2023]
Abstract
Metal phosphorus-based nanomaterials (Metal-P NMs) including metal phosphate nanomaterials, metal phosphide nanomaterials, and metal-black phosphorus (Metal-BP) nanocomposite are widely used in the field of biomedicine owing to their excellent physical and chemical properties, biocompatibility, and biodegradability. In recent years, metal phosphate nanomaterials and Metal-BP nanocomposite acted as medicine delivery system have made breakthroughs in tumor diagnosis including magnetic resonance imaging, fluorescence imaging, photoacoustic imaging, nuclear imaging, and therapies including chemotherapy, gene therapy, photothermal therapy, photodynamic therapy, and radiation therapy. Metal phosphate nanomaterials have good biodegradability, especially calcium-based metal phosphate nanomaterials can be dissolved into nontoxic ions and participate in the metabolisms of normal organs. Compared with metal phosphate nanomaterials, metal phosphide nanomaterials have excellent optical, magnetic, and catalytic properties, which can be used as multifunctional diagnostic nanoplatforms and therapeutic agents for chemodynamic therapy, photothermal therapy, or immunotherapy. The latest developments in Metal-P NMs, covering the range of preparation methods and biological applications, such as serving as drug carriers, tumor diagnosis, and therapy, are focused. All in all, the current trends, key issues, future prospects and challenges of Metal-P NMs are concluded and discussed, which are important for the development of this research field and shining more lights on this direction.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Xing X, Zhao S, Xu T, Huang L, Zhang Y, Lan M, Lin C, Zheng X, Wang P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Liu Y, Wang Y, Song S, Zhang H. Cancer therapeutic strategies based on metal ions. Chem Sci 2021; 12:12234-12247. [PMID: 34603654 PMCID: PMC8480331 DOI: 10.1039/d1sc03516a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
As a necessary substance to maintain the body's normal life activities, metal ions are ubiquitous in organisms and play a major role in various complex physiological and biochemical processes, such as material transportation, energy conversion, information transmission, metabolic regulation, etc. Their abnormal distribution/accumulation in cells can interfere with these processes, causing irreversible physical damage to cells or activating biochemical reactions to induce cell death. Therefore, metal ions can be exploited against a wide spectrum of cancers with high efficiency and without drug resistance, which can effectively inhibit the growth of cancer cells by triggering biocatalysis, breaking the osmotic balance, affecting metabolism, interfering with signal transduction, damaging DNA, etc. This perspective systematically summarizes the latest research progress of metal ion-based anti-tumor therapy, and emphasizes the challenges and development directions of this type of therapeutic strategy, hoping to provide a general implication for future research.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
7
|
Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. NANOSCALE ADVANCES 2021; 3:3417-3429. [PMID: 34527861 PMCID: PMC8388194 DOI: 10.1039/d0na00840k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy.
Collapse
Affiliation(s)
- Annah J Wilson
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | - Mohammed Rahman
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
8
|
Wang X, Zhong X, Lei H, Yang N, Gao X, Cheng L. Tumor microenvironment-responsive contrast agents for specific cancer imaging: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|