1
|
Easmin S, Pedireddi VR. Systematic Exploration of Structural Topologies in Hydrogen-Bonded Supramolecular Assemblies of Citric Acid with Different Heterocyclic Compounds. ACS OMEGA 2023; 8:23202-23217. [PMID: 37396223 PMCID: PMC10308566 DOI: 10.1021/acsomega.3c03446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Hydrogen-bonded supramolecular assemblies of citric acid, CA, with some heterocyclic compounds (N-donor and N-oxide)-acridine (acr), phenazine (phenz), 1,10-phenanthroline (110phen), 1,7-phenanthroline (17phen), 4,7-phenanthroline (47phen), 1,4-diazabicyclo[2.2.2]octane (dabco), and 4,4'-bipyridyl-N,N'-dioxide (bpydo)-have been reported. Among these, only the N-donors phenz and N-oxide (bpydo) form neutral co-crystals, while the others form salts owing to the deprotonation of -COOH. Thus, depending on the nature of the aggregate (salt/co-crystal), recognition between the co-formers is established through O-H···N/N+-H···O/N+H···O-heteromeric hydrogen bonding. Additionally, CA molecules establish homomeric interactions mediated by O-H···O hydrogen bonds. Moreover, CA forms a cyclic network with the co-formers or on its own, with a noteworthy feature of formation of host-guest networks in the assemblies with acr and phenz (solvated). In the assembly of acr, the CA molecules form a host network and captivate acr molecules as guest species, while in the case of phenz assembly, both the co-formers together encapsulate the solvent in the channels. However, the observed cyclic networks in the other structures form three-dimensional topologies in the form of ladders, a sandwich, lamellar layers, and interpenetrated networks. The structural features of the ensembles are evaluated unequivocally by the single-crystal X-ray diffraction method, while the homogeneity and phase purity are evaluated by using the powder X-ray diffraction method and differential scanning calorimetry. Further, conformational analysis of CA molecules reveals three types of conformations-T-shape (type I), syn-anti (type II), and syn (type III) as also observed in the literature for other CA co-crystals. In addition, the strength of the intermolecular interactions is quantified by performing Hirshfeld analysis.
Collapse
Affiliation(s)
- Samina Easmin
- Solid State & Supramolecular Chemistry
Laboratory, School of Basic Sciences, Indian
Institute of Technology Bhubaneswar, Argul, Bhubaneswar 752 050, India
| | - Venkateswara Rao Pedireddi
- Solid State & Supramolecular Chemistry
Laboratory, School of Basic Sciences, Indian
Institute of Technology Bhubaneswar, Argul, Bhubaneswar 752 050, India
| |
Collapse
|
2
|
Lei P, Ma L, Zhang S, Li J, Gan L, Deng K, Duan W, Li W, Zeng Q. The self-assembly and structural regulation of a hydrogen-bonded dimeric building block formed by two N-H…O hydrogen bonds on HOPG. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Meng T, Lei P, Zhang Y, Deng K, Xiao X, Zeng Q. Coronene and bipyridine derivatives inducing diversified structural transitions of carboxylic acids at the liquid/solid interface. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
- College of Materials and Chemical Engineering Ningbo University of Technology Ningbo 315211 China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yufei Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xunwen Xiao
- College of Materials and Chemical Engineering Ningbo University of Technology Ningbo 315211 China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Yan Q, Meng T, Luo W, Sun L, Zeng Q, Xu H. Co-assembly Behaviors of Flavonol Derivatives Induced by a Pyridine Derivative on HOPG via Hydrogen Bonding and Van der Waals Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8651-8656. [PMID: 35797253 DOI: 10.1021/acs.langmuir.2c01076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, two new flavonol derivatives, 2-(4-(dodecyloxy)phenyl)-3-hydroxyflavone (DHF) and 2-(3,5-bis(dodecyloxy)phenyl)-3-hydroxyflavone (BDHF), were synthesized to investigate the respective self-assembly behaviors at the liquid/solid interface by scanning tunneling microscopy. In addition, a linear pyridine derivative with acetylene groups called BisPy was added to regulate the assembly of DHF and BDHF, individually. However, only BDHF molecules successfully co-assembled into grid structures with BisPy molecules. Furthermore, the assembly and co-assembly behavior mechanism of flavonol derivatives and BisPy molecules were further studied by density functional theory calculations. This work will lay a foundation for investigating the self-assembly of flavonol derivatives and the co-assembly regulated by pyridine derivatives at the liquid-solid interface.
Collapse
Affiliation(s)
- Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Luo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| |
Collapse
|
5
|
Ma L, Ma C, Zhang S, Li J, Gan L, Deng K, Duan W, Li X, Zeng Q. Regulation of the Assembled Structure of a Flexible Porphyrin Derivative Containing Tetra Isophthalic Acids by Coronene or Different Pyridines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4434-4441. [PMID: 35357166 DOI: 10.1021/acs.langmuir.2c00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on previous research, a new coassembly formed by a porphyrin derivative (IPETPP), which contains a flexible substituent of m-phthalic acid, is observed with coronene (COR) molecules at a higher concentration. Besides, a fresh IPETPP self-assembly formed at a lower concentration and another new coassembly with COR molecules are obtained. Moreover, the addition of a series of bipyridines alters the diamond arrangement of IPETPP, which enhances the stability of the two-component structures. It is unprecedented that bipyridine derivatives break intermolecular hydrogen bonds containing m-phthalic acid substituents. All the coassemblies are investigated by scanning tunneling microscopy on a highly oriented pyrolytic graphite. Combined with density functional theory, the formation mechanism of the assembled structures is revealed. These results would contribute to understanding the interfacial crystal behaviors and probably provide an efficient pathway to regulate the binary structures.
Collapse
Affiliation(s)
- Lin Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Chunyu Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Linlin Gan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Wubiao Duan
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaokang Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang S, Chen C, Li J, Ma C, Li X, Ma W, Zhang M, Cheng F, Deng K, Zeng Q. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. NANOSCALE 2022; 14:2419-2426. [PMID: 35098290 DOI: 10.1039/d1nr07840b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The supramolecular self-assembly behavior of a low-symmetric aromatic carboxylic acid molecule (H5BHB) and its co-assembly behavior with a series of pyridine molecules (BPD, BPDYB and TPDYB) were studied at the heptanoic acid/HOPG liquid-solid interface. Scanning tunneling microscopy (STM) observations revealed that H5BHB molecules tend to form dimeric building blocks which then assemble into a close-packed structure. BPD, BPDYB and TPDYB pyridine molecules were all able to form a stable two-component co-assembled structure with the H5BHB molecule, and in these co-assembled structures, the H5BHB molecule still takes the form of a dimer. It was found that the pyridine molecules were able to regulate the self-assembly structure of the H5BHB molecule, and the molecular arrangement of the co-assembly structures varies with the shape of the pyridine molecules. Based on the analysis of the STM results and density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chen Chen
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Jianqiao Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chunyu Ma
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Xiaokang Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ke Deng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ma L, Wang P, Duan W, Tu B, Zeng Q. Regulation of a Porphyrin Derivative Containing Two Symmetric Benzoic Acids by Different Pyridines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11544-11551. [PMID: 34546063 DOI: 10.1021/acs.langmuir.1c01812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A porphyrin derivative called 5,15-di(4-carboxyphenyl)porphyrin (H2DCPp) with carboxyl groups successfully self-assembled on a highly oriented pyrolytic graphite (HOPG) surface and its co-assembly structures with three kinds of pyridine molecules were investigated by scanning tunneling microscopy (STM) with atomic resolution. H2DCPp arranged in a long-range ordered structure, and both 1,4-bis (pyridin-4-ylethynyl) benzene (BisPy), 4,4'-bipyridine (BP) and 1,3,5-tris(pyridin-4-ylethynyl) benzene (TPYB) molecules successfully regulated the host molecules as guest molecules. The well-organized model optimized by density functional theory (DFT) calculations reveals the detailed behavior of the assembly characteristics and regulation of porphyrin derivatives, which is helpful for the research and development of solar cells and nanodevices.
Collapse
Affiliation(s)
- Lin Ma
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Peng Wang
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Wubiao Duan
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Material Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li X, Li J, Ma C, Chen C, Zhang S, Tu B, Duan W, Zeng Q. Selective adsorption behaviors of guest molecules COR in the hexamer host networks at liquid/solid interface. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Meng T, Lei P, Zeng Q. Progress in the self-assembly of porphyrin derivatives on surfaces: STM reveals. NEW J CHEM 2021. [DOI: 10.1039/d1nj03111b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The latest progress in the assembly of porphyrin derivatives on solid surfaces.
Collapse
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Auffray M, Charra F, Sosa Vargas L, Mathevet F, Attias AJ, Kreher D. Synthesis and photophysics of new pyridyl end-capped 3D-dithia[3.3]paracyclophane-based Janus tectons: surface-confined self-assembly of their model pedestal on HOPG. NEW J CHEM 2020. [DOI: 10.1039/d0nj00110d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Once synthesized, these new tectons demonstrated both ionic and coordination bonding. Surprisingly, P forms a quasi-square self-assembly independently of the underlying HOPG lattice.
Collapse
Affiliation(s)
- M. Auffray
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - F. Charra
- Service de Physique de l’Etat Condensé
- CEA CNRS Université Paris-Saclay
- CEA Saclay
- F-91191 Gif-sur-Yvette Cedex
- France
| | - L. Sosa Vargas
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - F. Mathevet
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - A.-J. Attias
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - D. Kreher
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| |
Collapse
|