1
|
Yang J, Zhang Y, Liu K, Tang D, Zhou S, Yang X, Li Y, Liu Y. Z-Scheme Heterojunction of Phosphorus-Doped Carbon Nitride/Titanium Dioxide: Photocatalytic Performance. Molecules 2024; 29:4342. [PMID: 39339336 PMCID: PMC11433829 DOI: 10.3390/molecules29184342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
With increasingly serious environmental pollution problems, the development of efficient photocatalytic materials has become a hotspot in current research. This study focused on phosphorus-doped carbon nitride/titanium dioxide (PCT) Z-type heterojunctions, aiming to deeply investigate their photocatalytic degradation and photosensitive antimicrobial properties. A PCT Z-type heterojunction was successfully fabricated using melamine phosphate, cyanuric acid, and titanium dioxide. The structure, morphology, and optical properties of PCT Z-type heterojunctions were explored by FTIR, XRD, XPS, BET, SEM, UV-Vis DRS, TEM, EIS, and PL. A comprehensive and in-depth analysis of the structure, morphology, and optical properties of PCT Z-type heterojunctions was carried out. The photocatalytic degradation experiments revealed that PC3T Z-type heterojunctions exhibited an excellent degradation capability for methylene blue (MB) under visible light. The effect of PC3T on the adsorption-photocatalytic degradation of MB is more than 1.5 times that of a single titanium dioxide and P-doped carbon nitride. In the photosensitive antimicrobial performance study, PC3T reduced the survival rate of E. coli to 7%, after 120 min. Through free radical trapping experiments, it was shown that the hydroxyl radicals and superoxide radicals exerted an influence on the photocatalytic process. This study offers new ideas and approaches to address environmental pollution problems and holds significant theoretical and applied value.
Collapse
Affiliation(s)
- Jinyu Yang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Yanglin Zhang
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Kun Liu
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Dongxu Tang
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Shizhong Zhou
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Xiaojie Yang
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Yuesheng Li
- School of Nuclear Technology and Chemistry & Biology/Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China; (Y.Z.); (K.L.); (D.T.); (S.Z.); (X.Y.)
| | - Yi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Mengesha DN, Shiferraw BT, Kim H. Modification of the electronic structure of g-C 3N 4 using urea to enhance the visible light-assisted degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102910-102926. [PMID: 37676452 DOI: 10.1007/s11356-023-29692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Graphitic carbon nitride has been proven to be a good candidate for using solar energy for photo-induced pollutant degradation. However, the high photo-induced holes-electron recombination rate, unfavorable morphology, and textural properties limited their application. In this study, we present a novel g-C3N4 with a novel electronic structure and physiochemical properties by introducing a single nitrogen in the graphitic network of the g-C3N4 through a novel method involving step-by-step co-polycondensation of melamine and urea. Through extensive characterization using techniques such as XPS, UPS-XPS, Raman, XRD, FE-SEM, TEM, and N2 adsorption-desorption, we analyze the electronic and crystallographic properties, as well as the morphology and textural features of the newly prepared g-C3N4 (N-g-C3N4). This material exhibits a lower C/N ratio of 0.62 compared to conventional g-C3N4 and a reduced band gap of 2.63 eV. The newly prepared g-C3N4 demonstrates a distinct valance band maxima that enhances its photo-induced oxidation potential, improving photocatalytic activity in degrading various organic pollutants. We thoroughly investigate the photocatalytic degradation performance of N-g-C3N4 for Congo red (CR) and sulfamethoxazole (SMX), and removal of up to 90 and 86% was attained after 2 h at solution pH of 5.5 for CR and SMX. The influence of different parameters was examined to understand the degradation mechanism and the influence of reactive oxygenated species. The catalytic performance is also evaluated in the degradation of various organic pollutants, and it showed a good performance.
Collapse
Affiliation(s)
- Daniel N Mengesha
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Bezawit T Shiferraw
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
3
|
Hassanzadeh S, Farhadi S, Moradifard F. Synthesis of magnetic graphene-like carbon nitride-cobalt ferrite (g-C 3N 4/CoFe 2O 4) nanocomposite for sonocatalytic remediation of toxic organic dyes. RSC Adv 2023; 13:10940-10955. [PMID: 37033431 PMCID: PMC10077340 DOI: 10.1039/d3ra00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
A novel magnetic g-C3N4/CoFe2O4 nanocomposite was successfully synthesized by a simple hydrothermal method and applied as a new graphene-like carbon nitride-based sonocatalyst for sonodegradation of pollutant dyes. The as-prepared samples were characterized by using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), BET surface area measurements and photoluminescence (PL) spectroscopy. The results indicate that the nanocomposite sample is composed of spherical CoFe2O4 nanoparticles adhered to g-C3N4 naosheets. The g-C3N4/CoFe2O4 nanocomposites were used as a new magnetically separable sonocatalyst in H2O2-assisted sonodegradation of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes in aqueous media. The results showed complete degradation (ca. 100%) of dyes within short times (30-35 min). The sonocatalytic activity of graphitic carbon nitride (g-C3N4) was greatly enhanced with CoFe2O4 modification. Trapping experiments indicated that the g-C3N4/CoFe2O4 nanocomposites serves as a generator of hydroxyl radical (˙OH) via activation of H2O2 for degradation of dyes under ultrasound irradiation. Furthermore, the magnetic sonocatalyst can be separated from solution by an external magnet and reused several times without observable loss of activity. The possible mechanism of sonocatalytic activity was also proposed according to experimental results.
Collapse
Affiliation(s)
- Saeedeh Hassanzadeh
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Farzaneh Moradifard
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| |
Collapse
|
4
|
One-step nitrogen defect engineering of polymeric carbon nitride for visible light-driven photocatalytic O 2 reduction to H 2O 2. J Colloid Interface Sci 2023; 634:138-147. [PMID: 36535153 DOI: 10.1016/j.jcis.2022.11.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Polymeric carbon nitride (PCN) is an important metal-free photocatalyst for visible light-driven hydrogen peroxide (H2O2) production from O2 reduction. Herein, we synthesized the DPCN catalysts possessing nitrogen defects by one-step thermal polymerization of urea in N2 stream. As compared to the PCN conventionally synthesized in static air, X-ray photoelectrons spectroscopy (XPS) characterization disclosed that there are more pyridinic N defects in the DPCN catalysts, which is attributed to the removal of a proportion of NH3 released from urea pyrolysis by flowing N2. UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Mott-Schottky, steady-state and time-resolved photoluminescence (PL), and electrochemical impedance spectroscopy (EIS) characterizations revealed that the introduction of the nitrogen defects narrows down the band gap, improves the density of the photoexcited charge carriers, prolongs the lifetime of the charge carriers, and enhances the charge transfer efficiency. In visible light-driven photocatalytic O2 reduction to H2O2, the optimal DPCN catalyst afforded an activity of 4.35 times that of the PCN catalyst and a H2O2 concentration of 2.83 mmol L-1 after 10 h of visible light irradiation. This one-step thermal polymerization approach is valid when replacing N2 stream with Ar and He streams.
Collapse
|
5
|
TiO2-Based Heterostructure Containing g-C3N4 for an Effective Photocatalytic Treatment of a Textile Dye. Catalysts 2022. [DOI: 10.3390/catal12121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Water pollution has become a serious environmental issue. The textile industries using textile dyes are considered to be one of the most polluting of all industrial sectors. The application of solar-light semiconductor catalysts in wastewater treatment, among which TiO2 can be considered a prospective candidate, is limited by rapid recombination of photogenerated charge carriers. To address these limitations, TiO2 was tailored with graphitic carbon nitride (g-C3N4) to develop a heterostructure of g-C3N4@TiO2. Herein, a simple hydrothermal synthesis of TiO2@g-C3N4 is presented, using titanium isopropoxide (TTIP) and urea as precursors. The morphological and optical properties and the structure of g-C3N4, TiO2, and the prepared heterostructure TiO2@g-C3N4 (with different wt.% up to 32%), were analyzed by various laboratory methods. The photocatalytic activity was studied through the degradation of methylene blue (MB) aqueous solution under UV-A and simulated solar irradiation. The results showed that the amount of g-C3N4 and the irradiation source are the most important influences on the efficiency of MB removal by g-C3N4@TiO2. Photocatalytic degradation of MB was also examined in realistic conditions, such as natural sunlight and different aqueous environments. The synthesized g-C3N4@TiO2 nanocomposite showed superior photocatalytic properties in comparison with pure TiO2 and g-C3N4, and is thus a promising new photocatalyst for real-life implementation. The degradation mechanism was investigated using scavengers for electrons, photogenerated holes, and hydroxyl radicals to find the responsible species for MB degradation.
Collapse
|
6
|
Zahid S, Tariq Z, Azhar A, Khan SU, Ali U, Basit MA. Electroanalytical investigation of quantum-dot based deposition of metal chalcogenides on g-C3N4 for improved photochemical performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Enhanced Photocatalytic and Photoluminescence Properties Resulting from Type-I Band Alignment in the Zn2GeO4/g-C3N4 Nanocomposites. Catalysts 2022. [DOI: 10.3390/catal12070692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Well-defined Zn2GeO4/g-C3N4 nanocomposites with a band alignment of type-I were prepared by the ultrasound-assisted solvent method, starting from g-C3N4 nanosheets and incorporating 0, 10, 20, and 40 wt% of Zn2GeO4. In this study, we have investigated in-depth the photoluminescence emission and photocatalytic activity of these nanocomposites. Our experimental results showed that an increased mass ratio of Zn2GeO4 to g-C3N4 can significantly improve their photoluminescence and photocatalytic responses. Additionally, we have noted that the broadband photoluminescence (PL) emission for these nanocomposites reveals three electronic transitions; the first two well-defined transitions (at ca. 450 nm and 488 nm) can be attributed to π*→ lone pair (LP) and π*→π transitions of g-C3N4, while the single shoulder at ca. 532 nm is due to the oxygen vacancy (Vo) as well as the hybridization of 4s and 4p orbital states in the Zn and Ge belonging to Zn2GeO4. These experimental findings are also supported by theoretical calculations performed under periodic conditions based on the density functional theory (DFT) fragment. The theoretical findings for these nanocomposites suggest a possible strain-induced increase in the Zn-O bond length, as well as a shortening of the Ge-O bond of both tetrahedral [ZnO4] and [GeO4] clusters, respectively. Thus, this disordered structure promotes local polarization and a charge gradient in the Zn2GeO4/g-C3N4 interface that enable an efficient separation and transfer of the photoexcited charges. Finally, theoretical results show a good correlation with our experimental data.
Collapse
|
8
|
Maria Mahimai B, Sivasubramanian G, Kulasekaran P, Deivanayagam P. Sulfonated polystyrene- block-poly(ethylene-ran-butylene)- block-polystyrene based membranes containing CuO@g-C 3N 4 embedded with 2,4,6-triphenylpyrylium tetrafluoroborate for fuel cell applications. SOFT MATTER 2021; 17:8387-8393. [PMID: 34550155 DOI: 10.1039/d1sm01015h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New series of polymer composite membranes were prepared from sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (S-PSEBS) and copper oxide loaded in graphitic carbon nitride (CuO@N-C) embedded with an ionic liquid, 2,4,6-triphenylpyrylium tetrafluoroborate. The structural and physicochemical properties of the composite membranes were studied in detail. Electrolyte membrane loaded with 8.0 wt% of CuO@N-C exhibited the maximum ion-exchange capacity of 3.1 meq. g-1, whereas that of the pristine membrane was restricted to 1.8 meq. g-1. From the TGA profile of the composite membrane, it was found to exhibit adequate thermal stability to be employed as electrolyte in fuel cells. Proton conductivity of the composite membranes was found to be in the range between 0.0179 S cm-1 and 0.0229 S cm-1. Indeed, the substantial results achieved with the S-PSEBS/CuO@N-C composite membranes were indicative of the notable features of the membranes for use in fuel cells.
Collapse
Affiliation(s)
- Berlina Maria Mahimai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India.
| | - Gandhimathi Sivasubramanian
- Department of Physics, SRM Valliammai Engineering College, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Poonkuzhali Kulasekaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India.
| | - Paradesi Deivanayagam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India.
| |
Collapse
|
9
|
Alwin E, Nowicki W, Wojcieszak R, Zieliński M, Pietrowski M. Elucidating the structure of the graphitic carbon nitride nanomaterials via X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Trans 2020; 49:12805-12813. [PMID: 32959849 DOI: 10.1039/d0dt02325f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By using the most popular method of thermal condensation of dicyandiamide in a semi-closed system, graphitic carbon nitrides (gCNs) were synthesized at 500, 550, and 600 °C. The resulting materials were comprehensively analyzed via X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD)techniques. We show that the use of routine analytical methods provides an insight into the structure of the carbon nitride materials. The analysis of geometric linear structures and fully condensed structure of polymeric carbon nitrides was performed and the ranges within which the contents of different nitrogen species (pyridine, amine, imine and quaternary nitrogen) can change were determined. This analysis, in combination with quantitative XPS studies, permits to state that the carbon nitride structure prepared by the thermal condensation of dicyandiamide is closer to the structure in which poly(aminoimino)heptazine subunits are linked into chains rather than the structure involving fully-condensed polyheptazine network. The XRD analysis proved that the 3D crystal structure of carbon nitride is described more correctly by the orthorhombic cell and space group P21212 applied to condensed chains of poly(aminoimino)heptazine (melon) and not by the hexagonal cell with the space group P6m2.
Collapse
Affiliation(s)
- Emilia Alwin
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Waldemar Nowicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
10
|
Zhang S, Li G, Duan L, Wang H, Zhao Y, Zhang Y. g-C 3N 4 synthesized from NH 4SCN in a H 2 atmosphere as a high performance photocatalyst for blue light-driven degradation of rhodamine B. RSC Adv 2020; 10:19669-19685. [PMID: 35515434 PMCID: PMC9054138 DOI: 10.1039/d0ra02454f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4) was prepared by a simple thermal polymerization method in this work. The effects of precursor type, thermal polymerization temperature, constant temperature time and atmosphere on the crystal structure, morphology, elemental composition, valence distribution, light absorption properties and photocatalytic activity of the prepared photocatalytic materials were investigated. Taking rhodamine B (RhB) as the target degradant, the blue light catalytic activity of the photocatalytic material was studied in detail. The experimental results showed that the final pyrolysis temperature and constant temperature time are positively related to the adsorption characteristics and photocatalytic ability of the prepared materials. In addition, the adsorption capacity and photocatalytic activity of the products obtained in Ar and H2 atmospheres are better than those produced in CO and CH4, which can be attributed to the combined effect of large specific surface area and structural defects of the materials. The sample's large specific surface area, wide band gap, and excellent photogenerated carrier separation and transfer capabilities make the adsorption performance and photocatalytic performance of the products obtained with ammonium thiocyanate and thiourea as precursors better than those prepared from melamine and dicyandiamide. g-C3N4 prepared by using ammonium thiocyanate as precursor at 550 °C for 5 h under a hydrogen atmosphere showed the best catalytic activity for the degradation of RhB under blue light. It was demonstrated that g-C3N4 prepared exhibited good stability and reusability after four repeat experiments. The active components that play major roles in the degradation of RhB described herein were holes and superoxide radicals, which was inferred by free radical trapping experiments. This work provides a theoretical basis for the idea of converting the mixed salts of desulfurization waste liquid containing ammonium thiocyanate into an excellent photocatalyst g-C3N4 with visible light response.
Collapse
Affiliation(s)
- Shuting Zhang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology Taiyuan 030024 China
| | - Guoqiang Li
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology Taiyuan 030024 China
| | - Liyuan Duan
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology Taiyuan 030024 China
| | - Hongyu Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology Taiyuan 030024 China
| | - Yongle Zhao
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology Taiyuan 030024 China
| | - Yongfa Zhang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
11
|
Tang Q, Niu R, Gong J. Salt-templated synthesis of 3D porous foam-like C 3N 4 towards high-performance photodegradation of tetracyclines. NEW J CHEM 2020. [DOI: 10.1039/d0nj03346d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
3D porous foam-like C3N4 is prepared by a salt-templated method, and it shows 64 times higher efficiency than bulk C3N4 in degrading tetracyclines.
Collapse
Affiliation(s)
- Qingquan Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| |
Collapse
|