1
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Huang P, Yue Y, Yin C, Huo F. Design of Dual‐responsive ROS/RSS Fluorescent Probes and Their Application in Bioimaging. Chem Asian J 2022; 17:e202200907. [DOI: 10.1002/asia.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pei Huang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry Shanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
3
|
Walsh MP, Barclay JA, Begg CS, Xuan J, Johnson NT, Cole JC, Kitching MO. Identifying a Hidden Conglomerate Chiral Pool in the CSD. JACS AU 2022; 2:2235-2250. [PMID: 36311827 PMCID: PMC9597607 DOI: 10.1021/jacsau.2c00394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Conglomerate crystallization is the spontaneous generation of individually enantioenriched crystals from a nonenantioenriched material. This behavior is responsible for spontaneous resolution and the discovery of molecular chirality by Pasteur. The phenomenon of conglomerate crystallization of chiral organic molecules has been left largely undocumented, with no actively curated list available in the literature. While other crystallographic behaviors can be interrogated by automated searching, conglomerate crystallizations are not identified within the Cambridge Structural Database (CSD) and are therefore not accessible by conventional automated searching. By conducting a manual search of the CSD and literature, a list of over 1800 chiral species capable of conglomerate crystallization was curated by inspection of the racemic synthetic routes described in each publication. The majority of chiral conglomerate crystals are produced and published by synthetic chemists who seldom note and rarely exploit the implications this phenomenon can have on the enantiopurity of their crystalline materials. With their structures revealed, we propose that this list of compounds represents a new chiral pool which is not tied to biological sources of chirality.
Collapse
Affiliation(s)
- Mark P. Walsh
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - James A. Barclay
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Callum S. Begg
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Jinyi Xuan
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Natalie T. Johnson
- Cambridge
Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, United Kingdom
| | - Jason C. Cole
- Cambridge
Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, United Kingdom
| | - Matthew O. Kitching
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| |
Collapse
|
4
|
Poljak M, Wohlrábová L, Palao E, Nociarová J, Míšek J, Slanina T, Klán P. Chalcogen-based ratiometric reversible BODIPY redox sensors for the determination of enantioselective methionine sulfoxide reductase activity. Chem Commun (Camb) 2022; 58:6389-6392. [PMID: 35543358 DOI: 10.1039/d2cc02016e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many serious diseases are associated with degenerative changes caused by oxidative stress triggered by elevated concentrations of reactive oxygen species (ROS) in cells. Therefore, the development of suitable probes for monitoring such processes is of great importance. Here, we introduce a series of sulfur- and selenium-substituted BODIPY derivatives as reversible redox sensors for ROS and enzymatic redox processes. Significant differences in emission maxima and fluorescence quantum yields between the reduced and oxidized forms make them excellent ratiometric turn-on/off probes. Installation of polar sulfonate groups improved their aqueous solubility while retaining their sensing properties, which allowed the probes to monitor the enzymatic activity of enantioselective methionine sulfoxide reductase.
Collapse
Affiliation(s)
- Michal Poljak
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucie Wohlrábová
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542, 160 00 Prague, Czech Republic.
| | - Eduardo Palao
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jela Nociarová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542, 160 00 Prague, Czech Republic.
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Wan Z, Yu S, Wang Q, Tobia J, Chen H, Li Z, Liu X, Zhang Y. A BODIPY-Based Far-Red-Absorbing Fluorescent Probe for Hypochlorous Acid Imaging. CHEMPHOTOCHEM 2022; 6:e202100250. [PMID: 36776746 PMCID: PMC9912931 DOI: 10.1002/cptc.202100250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypochlorous acid (HClO) is produced by white blood cells to defend against injury and bacteria. However, as one of the reactive oxygen species, high intracellular HClO concentration could lead to chronic diseases that affect the cardiovascular and nervous systems. To monitor HClO concentrations in bio-samples, the fluorescent probe is preferred to have: a) absorbability in the far-red window with reduced light-toxicity and improved tissue penetration depth, b) ratiometric feature for accurate analysis. In this study, we reported a far-red ratiometric HClO fluorescence probe based on BODIPY chromophore and aldoxime sensing group. Not only the color change of the probe solution can be detected by naked eyes, but also the emission ratios (I645/I670) showed a significant increase upon the introduction of HClO. More importantly, the feasibility of HClO monitoring in bio-samples was demonstrated in vitro using a confocal microscope.
Collapse
Affiliation(s)
- Zhaoxiong Wan
- Department of Chemistry and Environment Science, College of Science and Liberal Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Shupei Yu
- Department of Chemistry and Environment Science, College of Science and Liberal Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry and Environment Science, College of Science and Liberal Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - John Tobia
- Department of Chemistry and Environment Science, College of Science and Liberal Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry and Environment Science, College of Science and Liberal Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| | - Zhanjun Li
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07922, United States
| | - Yuanwei Zhang
- Department of Chemistry and Environment Science, College of Science and Liberal Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
7
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
8
|
Tiekink ERT. Zero-, one-, two- and three-dimensional supramolecular architectures sustained by Se …O chalcogen bonding: A crystallographic survey. Coord Chem Rev 2021; 427:213586. [PMID: 33100367 PMCID: PMC7568495 DOI: 10.1016/j.ccr.2020.213586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
The Cambridge Structural Database was evaluated for crystals containing Se…O chalcogen bonding interactions. These secondary bonding interactions are found to operate independently of complementary intermolecular interactions in about 13% of the structures they can potentially form. This number rises significantly when more specific interactions are considered, e.g. Se…O(carbonyl) interactions occur in 50% of cases where they can potentially form. In about 55% of cases, the supramolecular assemblies sustained by Se…O(oxygen) interactions are one-dimensional architectures, with the next most prominent being zero-dimensional assemblies, at 30%.
Collapse
Affiliation(s)
- Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, 5 Jalan Universiti, Sunway University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
9
|
Ishii A, Kikushima C, Hayashi Y, Ohtsuka N, Nakata N, Muranaka A, Tanaka Y, Uchiyama M. 1-Phosphino-1,3-butadiene Derivatives Incorporated with Dibenzobarrelene Skeleton: Synthesis and Photophysical Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiko Ishii
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Chiharu Kikushima
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yuki Hayashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Nobuhiko Ohtsuka
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Atsuya Muranaka
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
10
|
Hatai J, Hirschhäuser C, Schmuck C, Niemeyer J. A Metallosupramolecular Coordination Polymer for the 'Turn-on' Fluorescence Detection of Hydrogen Sulfide. ChemistryOpen 2020; 9:786-792. [PMID: 32760642 PMCID: PMC7391242 DOI: 10.1002/open.202000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
A coumarin based probe for the efficient detection of hydrogen sulfide in aqueous medium is reported. The investigated coumarine-based derivative forms spherical nanoparticles in aqueous media. In presence of Pd2+, a metallosupramolecular coordination polymer is formed, which is accompanied by quenching of the coumarin emission at 390 nm. Its Pd2+ complex could be used as a probe for chemoselective detection of monohydrogensulfide (HS-). Presence of HS- leads to a'turn-on' fluorescence signal, resulting from decomplexation of Pd2+ from the metallosupramolecular probe. The probe was successfully applied for qualitative and quantitative detection of HS- in different sources of water directly collected from sea, river, tap and laboratory drain water, as well as in growth media for aquatic species.
Collapse
Affiliation(s)
- Joydev Hatai
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Christoph Hirschhäuser
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Carsten Schmuck
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| |
Collapse
|