1
|
Guo Q, Huang X, Li H, Guo J, Wang C. Optically active chiral photonic crystals exhibiting enhanced fluorescence and circularly polarized luminescence. NANOSCALE 2025; 17:9330-9336. [PMID: 40105148 DOI: 10.1039/d4nr05442c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Photonic crystals with advanced, unique and well-defined functional nanostructures demonstrate exquisite controllable modulation in light harvesting and emission for unrivalled optical performance. Herein, through ingeniously integrating aggregation-induced emission (AIE) luminogens and chiral helical media into ordered periodic structures, the resulting optically active photonic crystal films exhibit an enhanced photoluminescence (PL) characteristic (increased to 2.2 times the original value) and distinctive emerging circular dichroism (CD) responses near the photonic bandgap (PBG) of the photonic crystal. The modulation of the PL intensity and CD signal peak position is precisely achieved by regulating the PBG by facilely tuning the size of the colloidal nanoparticles. Such an interesting phenomenon is mainly the consequence of the PBG edge enhancement effect (including the slow photon effect) and bandgap separation arising from chirality. Remarkably, the boosted fluorescence facilitates the synergistic effect of valid chirality transfer among achiral AIEgens and chiroptical media in a photonic matrix, which effectively contributes to the enhanced circularly polarized luminescence (CPL) activity, thereby expanding the potential applications of CPL-based optically active photonic materials in circularly polarizing emitting devices.
Collapse
Affiliation(s)
- Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Xingye Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Huateng Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Lekshmanan L, Pillai AS, Thomas MM, Sukumaran PA, Saif S, Thankamani PR, Surendran KP, Pillai S, Ajayaghosh A. Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres. SMALL METHODS 2024:e2402125. [PMID: 39703087 DOI: 10.1002/smtd.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 12/21/2024]
Abstract
To counter economic terrorism by preventing counterfeit currency, documents and high-value commercial products, new-generation security inks with multiple safety features are required. Herein, color-tunable pyrylium and pyridinium dye-encapsulated polymethyl methacrylate (PMMA) colloidal microspheres are reported to exhibiting brilliant emission and photonic properties. A combination of the PMMA colloidal photonic ink having structural color variation and the dye-encapsulated colloidal photonic ink with fluorescence modulation is used for security labeling. The angle-dependent structural color variations, a remarkable 250-fold fluorescence enhancement, non-toxicity, and the rare earth-free formulation have made the ink novel and suitable for dual-layer high-security printing. Covert security patterns and labels are made overt under 365 nm UV light, while also exhibiting angle-dependent structural color. The increased level of security with developed photonic colloidal inks is demonstrated with dual-layer screen-printed images and patterns on flexible substrates.
Collapse
Affiliation(s)
- Lekshmi Lekshmanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Adarsh S Pillai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Meghana M Thomas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Priyanka A Sukumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Safna Saif
- International School of Photonics, Cochin University of Science and Technology (CUSAT), Cochin, 682022, India
| | - Priya R Thankamani
- International School of Photonics, Cochin University of Science and Technology (CUSAT), Cochin, 682022, India
| | - Kuzhichalil P Surendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Saju Pillai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
3
|
Fang L, Dai Y, Bai Y, Meng Y, Yu W, Gao Y, Tang R, Zhang Y, Li L, Wang J, Ding Y, Wang Y, Chen T, Cai Y, Yao Y. Fluorescence-enhanced supra-amphiphiles based on pillar[5]arene: construction, controllable self-assembly and application in cell imaging. Chem Commun (Camb) 2024; 60:7646-7649. [PMID: 38963720 DOI: 10.1039/d4cc01987c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Fluorescence-enhanced supra-amphiphiles based on (WP5)2⊃ENDTn were constructed successfully. When n = 9, they can self-assemble into uniform micelles with an average diameter of about 90 nm and be further applied in cell imaging.
Collapse
Affiliation(s)
- Lizhen Fang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yiqiao Bai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yunhan Gao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
4
|
Thomas MM, Babu A, Chandran PR, S ST, Pillai S. Colloidal Photonic Crystal-Enhanced Fluorescence of Gold Nanoclusters: A Highly Sensitive Solid-state Fluorescent Probe for Creatinine. Chem Asian J 2023; 18:e202201035. [PMID: 36519438 DOI: 10.1002/asia.202201035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Gold nanoclusters (AuNCs) are an intensely pursued class of fluorophores with excellent biocompatibility, high water solubility, and ease of further conjugation. However, their low quantum yield limits their applications, such as ultra-sensitive chemical or molecular sensing. To address this problem, various strategies have been adopted for augmenting their fluorescence intensity. Herein, we report a facile and scalable approach for the fluorescence enhancement of bovine serum albumin (BSA) capped AuNCs (BSA-AuNCs) using periodic, close-packed polystyrene colloidal photonic crystals (CPCs). The slow photon effect at the bandgap edges is utilized for the increased light-matter interactions and thereby enhancing the fluorescence intensity of the BSA-AuNCs. Compared to the planar polystyrene control sample, the CPC film yielded a 14-fold enhancement in fluorescence intensity. Further, we demonstrated the as-prepared BSA-AuNCs-CPC as a solid-state platform for the highly sensitive and selective fluorescence turn-off detection of creatinine at nanomolar level.
Collapse
Affiliation(s)
- Meghana Mary Thomas
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aswathy Babu
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India.,Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Faculty of Science, Atlantic Technological University ATU, Sligo, F91 YW50, Ireland
| | - Parvathy R Chandran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India
| | - Silpa T S
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Almohammed S, K. Orhan O, Daly S, O’Regan DD, Rodriguez BJ, Casey E, Rice JH. Electric Field Tunability of Photoluminescence from a Hybrid Peptide-Plasmonic Metal Microfabricated Chip. JACS AU 2021; 1:1987-1995. [PMID: 35574042 PMCID: PMC8611722 DOI: 10.1021/jacsau.1c00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Enhancement of fluorescence through the application of plasmonic metal nanostructures has gained substantial research attention due to the widespread use of fluorescence-based measurements and devices. Using a microfabricated plasmonic silver nanoparticle-organic semiconductor platform, we show experimentally the enhancement of fluorescence intensity achieved through electro-optical synergy. Fluorophores located sufficiently near silver nanoparticles are combined with diphenylalanine nanotubes (FFNTs) and subjected to a DC electric field. It is proposed that the enhancement of the fluorescence signal arises from the application of the electric field along the length of the FFNTs, which stimulates the pairing of low-energy electrons in the FFNTs with the silver nanoparticles, enabling charge transport across the metal-semiconductor template that enhances the electromagnetic field of the plasmonic nanoparticles. Many-body perturbation theory calculations indicate that, furthermore, the charging of silver may enhance its plasmonic performance intrinsically at particular wavelengths, through band-structure effects. These studies demonstrate for the first time that field-activated plasmonic hybrid platforms can improve fluorescence-based detection beyond using plasmonic nanoparticles alone. In order to widen the use of this hybrid platform, we have applied it to enhance fluorescence from bovine serum albumin and Pseudomonas fluorescens. Significant enhancement in fluorescence intensity was observed from both. The results obtained can provide a reference to be used in the development of biochemical sensors based on surface-enhanced fluorescence.
Collapse
Affiliation(s)
- Sawsan Almohammed
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Okan K. Orhan
- School
of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| | - Sorcha Daly
- School
of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - David D. O’Regan
- School
of Physics, AMBER, and CRANN Institute, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| | - Brian J. Rodriguez
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Eoin Casey
- School
of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
6
|
Dinh VP, Nguyen DK, Nguyen QH, Luu TT, Pham THY, Vu TTH, Chuang HS, Pham HP. Fabrication of SiO 2/PEGDA Inverse Opal Photonic Crystal with Fluorescence Enhancement Effects. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6613154. [PMID: 33708452 PMCID: PMC7932782 DOI: 10.1155/2021/6613154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 05/05/2023]
Abstract
The present paper reports the fabrication of inverse opal photonic crystals (IOPCs) by using SiO2 spherical particles with a diameter of 300 nm as an opal photonic crystal template and poly(ethylene glycol) diacrylate (PEGDA) as an inverse opal material. Characteristics and fluorescence properties of the fabricated IOPCs were investigated by using the Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), reflection spectroscopy, and fluorescence microscopy. The results clearly showed that the IOPCs were formed comprising of air spheres with a diameter of ∼270 nm. The decrease in size led to a decrease in the average refractive indexes from 1.40 to 1.12, and a remarkable stopband blue shift for the IOPCs was thus achieved. In addition, the obtained results also showed a fluorescence enhancement over 7.7-fold for the Fluor® 488 dye infiltrated onto the IOPCs sample in comparison with onto the control sample.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Duy-Khoi Nguyen
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Quang-Hung Nguyen
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
| | - Thi-Thuy Luu
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Thi Hai Yen Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Ha Noi, Vietnam
| | - Thi Thu Ha Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Ha Noi, Vietnam
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Phong Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Ha Noi, Vietnam
- Graduate University of Science and Technology, 18- Hoang Quoc Viet Road, Cau Giay, Ha Noi, Vietnam
| |
Collapse
|
7
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|