Dias JS, Batista FRM, Bacani R, Triboni ER. Structural characterization of SnO nanoparticles synthesized by the hydrothermal and microwave routes.
Sci Rep 2020;
10:9446. [PMID:
32523126 PMCID:
PMC7286915 DOI:
10.1038/s41598-020-66043-4]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/13/2020] [Indexed: 11/23/2022] Open
Abstract
SnO particles were synthesized by an alkali-assisted hydrothermal and microwave methods. The aqueous-based reactions were carried out at pH ~ 8, under inert atmosphere (Ar). The reactions were taken under different times, and a full XRD structural analysis was made to evaluate the conversion from the Sn6O4(OH)4 intermediate to SnO particles. Williamson-Hall analysis showed that the size and strain of the SnO particles were time and route treatment dependent. Microwave heating yielded a single tetragonal SnO phase after 1 h of thermal treatment, and TEM images revealed spherical-shaped SnO nanoparticles with an average size of 9(1) nm. While by the hydrothermal treatment single SnO phase was obtained only after 4 hours, yielding non-uniform and elongated particles with sub-micrometric size. A dissolution-recrystallization process was taken into account as the mechanism for SnO particles formation, in which hydroxylated complexes, Sn2(OH)6−2, then condense to form the oxide. The time-shorting reaction provided by the microwave-assisted synthesis may be attributed to better heat distribution.
Collapse