1
|
Takabi AS, Mouradzadegun A. Synthesis of Titania nanowires doped with Cd on the based Polycalix[4]resorcinarene for photocatalytic oxidation of aromatic alcohols under LED irradiation. Sci Rep 2025; 15:9400. [PMID: 40108194 PMCID: PMC11923119 DOI: 10.1038/s41598-025-89742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Semiconductor photocatalysis as an alternative technology has received extensive attention for addressing worldwide energy and environmental issues. However, it is still a great challenge and imperative to profoundly understand the migration mechanisms for achieving the complete utilization of photoexcited charge carriers. Photocatalytic selective oxidation of alcohols into corresponding aldehydes has received enormous attention. In this paper, The structure of the TiO2NWs-Cd/Polycalix[4]resorcinarene nanocomposites was analyzed by thermal sonicate and solvothermal methods and then thoroughly characterized by a range of XRD, FT-IR, SEM, PL, and DRS techniques. The photoactivity of the compounds against the oxidation of four substituted benzyl alcohols was surveyed. The resultant nanocomposite (TiO2NWs-Cd(48%)/Polycalix[4]resorcinarene) demonstrates greater photocatalytic efficiency than both its pure TiO2 and cadmium-doped TiO2 for the oxidation of benzyl alcohols under the illumination of LED light (λ ≥ 400 nm). The introduction of the TiO2NWs-Cd on the surface of Polycalix[4]resorcinarene can improve the absorption ability in the visible region and the separation efficiency of charge carriers during photocatalytic oxidation. Hence, these obtained results show that the TiO2NWs-Cd (48wt%)/Polycalix[4]resorcinarene nanocomposite possesses high photocatalytic performance and excellent reusability in oxidation reactions and LED-light-driven organic oxidations carried out under mild conditions offering a sustainable approach to performing chemical transformations important to the chemical industry.
Collapse
Affiliation(s)
- Asiyeh Sheikhzadeh Takabi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Arash Mouradzadegun
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran, 1417614411.
| |
Collapse
|
2
|
Tessema A, Wu CM, Motora KG. Highly Efficient Solar Light Driven g-C 3N 4@Cs 0.33WO 3 Heterojunction for the Photodegradation of Colorless Antibiotics. ACS OMEGA 2022; 7:38475-38486. [PMID: 36340061 PMCID: PMC9631413 DOI: 10.1021/acsomega.2c03675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This study facilitates the synthesis of a graphitic carbon nitride/cesium tungsten oxide (g-C3N4@Cs0.33WO3) heterojunction using a solvothermal method. The photocatalytic activities of the prepared samples were examined for the photodegradation of colorless antibiotics, namely tetracycline, enrofloxacin, and ciprofloxacin, as well as cationic and anionic dyes, such as methyl orange, rhodamine B, neutral red, and methylene blue, under full-spectrum solar light. We have purposely selected different kinds of wastewater pollutants of colorless antibiotics and cationic and anionic organic dyes to investigate the potential application of this heterojunction toward different groups of water pollutants. The results revealed that the g-C3N4@Cs0.33WO3 heterojunction showed an outstanding photocatalytic activity toward all the pollutants with concentrations of 20 ppm each at pH 3 by photocatalytically removing 97% of tetracycline within 3 h, 98% of enrofloxacin within 2 h, 97% of ciprofloxacin within 2.25 h, 98% of methylene blue in 1 h, 99% of rhodamine B within 2 h, 99% of neutral red in 1.25 h, and 95% of methyl orange in 2 h. These findings indicate that the developed photocatalyst possesses excellent photocatalytic properties toward seven different water pollutants that make it a universal photocatalyst. The developed g-C3N4@Cs0.33WO3 oxide heterojunction also presented a photocatalytic performance better than those of reported solar light active photocatalysts for photodegradation of rhodamine B and tetracycline. The efficient photocatalytic performance of the heterojunction can be ascribed to its extended light-absorbing ability, effective charge separation and fast charge transfer properties, and a high surface area. Moreover, an active species detection experiment also confirmed that superoxide radicals, hydroxyl radicals, and holes played significant roles in the photocatalysis of the organic dyes and tetracycline.
Collapse
|
3
|
Ghobadifard M, Radovanovic PV, Mohebbi S. Novel CoFe
2
O
4
/CuBi
2
O
4
heterojunction p‐n semiconductor as visible‐light‐driven nano photocatalyst for C (OH)‐H bond activation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahdieh Ghobadifard
- Department of Chemistry University of Kurdistan Sanandaj Iran
- Department of Chemistry University of Waterloo Waterloo ON Canada
- Research Center for Nanotechnology University of Kurdistan Sanandaj Iran
| | | | - Sajjad Mohebbi
- Department of Chemistry University of Kurdistan Sanandaj Iran
- Research Center for Nanotechnology University of Kurdistan Sanandaj Iran
| |
Collapse
|
4
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
5
|
Kumar I, Kumar R, Gupta SS, Sharma U. C 70 Fullerene Catalyzed Photoinduced Aerobic Oxidation of Benzylamines to Imines and Aldehydes. J Org Chem 2021; 86:6449-6457. [PMID: 33886326 DOI: 10.1021/acs.joc.1c00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C70 fullerene catalyzed photoinduced oxidation of benzylic amines at ambient conditions has been explored here. The developed strategy's main feature includes the additive/oxidant-free conversion of benzylic amine to corresponding imine and aldehydes. The reaction manifests broad substrate scope with excellent function group leniency and is applicable up to the gram scale. Further, symmetrical secondary amines can also be synthesized from benzylic amine in a one-pot two-step process. Various experiments and density functional theory studies revealed that the current reaction involves the generation of reactive oxygen species, single electron transfer reaction, and benzyl radical formation as key steps under photocatalytic conditions.
Collapse
Affiliation(s)
- Inder Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Shiv Shankar Gupta
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Synergistic effect of iodine doped TiO2 nanoparticle/g-C3N4 nanosheets with upgraded visible-light-sensitive performance toward highly efficient and selective photocatalytic oxidation of aromatic alcohols under blue LED irradiation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Cheng T, Gao H, Sun X, Xian T, Wang S, Yi Z, Liu G, Wang X, Yang H. An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: Construction strategy and application in environmental purification. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.01.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Della Rocca DG, Peralta RM, Peralta RA, Peralta Muniz Moreira RDF. Recent development on Ag2MoO4-based advanced oxidation processes: a review. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01934-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Ghobadifard M, Safaei E, Radovanovic PV, Mohebbi S. A porphyrin-conjugated TiO 2/CoFe 2O 4 nanostructure photocatalyst for the selective production of aldehydes under visible light. NEW J CHEM 2021. [DOI: 10.1039/d0nj06272c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZnTCPP-TiO2/CoFe2O4 nanohybrid easily reusable using a permanent magnet without losing its reactivity for the selective production of aldehydes from a mechanistic point of view.
Collapse
Affiliation(s)
- Mahdieh Ghobadifard
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
- Department of Chemistry
| | - Elham Safaei
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
| | | | - Sajjad Mohebbi
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
- Research Center for Nanotechnology
| |
Collapse
|
10
|
Li L, Yin D, Deng L, Xiao S, Ouyan Y, Khaing KK, Guo X, Wang J, Luo Z. Fabrication of a novel ternary heterojunction composite Ag 2MoO 4/Ag 2S/MoS 2 with significantly enhanced photocatalytic performance. NEW J CHEM 2021. [DOI: 10.1039/d0nj04290k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ternary heterojunction Ag2MoO4/Ag2S/MoS2 was successfully fabricated via a facile two-step method. The prepared ternary heterojunction showed much enhanced catalytic activity compared with monomers and binary heterojunctions.
Collapse
Affiliation(s)
- Luqiu Li
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Linlin Deng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | | | | | - Kyu Kyu Khaing
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Xiandi Guo
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Jun Wang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Zhaoyue Luo
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| |
Collapse
|
11
|
Abdel Maksoud MIA, El-Sayyad GS, El-Khawaga AM, Abd Elkodous M, Abokhadra A, Elsayed MA, Gobara M, Soliman LI, El-Bahnasawy HH, Ashour AH. Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123000. [PMID: 32937703 DOI: 10.1016/j.jhazmat.2020.123000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
With recently increasing the environmental problems and expected energy crisis, it is necessary to synthesis a low-cost, efficient, and UV-light responsive photocatalyst for contaminants' degradation. The nanostructured spinel ferrite Mn0.5Zn0.5-xMgxFe2O4 NPs (x = 0.0, 0.125, 0.25, 0.375 and 0.50) were synthesized via the sol-gel method. The crystallite size was lied in nano regime ranging from 21.8 to 36.5 nm. The surface chemical composition of the Mn0.5Zn0.5-xMgxFe2O4 NPs was investigated via XPS analysis. Mossbauer spectra showed that the peaks were shifted to higher values of the maximum magnetic field as the Mg content increased, indicating that the crystallinity is enhanced while the crystal size is decreased. Also, various parameters such as the photocatalyst dose, dyes concentration, pH, point of zero charge, and the metals leaching were studied. The point of zero charge (PZC) has found at pH = 2.38. The Mn0.5Zn0.125Mg0.375Fe2O4 NPs showed an excellent UV-assisted photocatalytic activity against Chloramine T (90 % removal efficiency) and Rhodamine B (95 % removal efficiency) after 80 min as compared to pure Mn0.5Zn0.5Fe2O4 ferrite NPs. Besides, it a recyclable catalyst at least four times with a negligible reduction of photocatalytic activity with slight elements leaching. Furthermore, the Mn0.5Zn0.25Mg0.25Fe2O4 NPs showed a high antimicrobial activity towards pathogenic bacteria and yeats.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Cairo, Egypt; Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza16453, Egypt
| | - A Abokhadra
- Basic Science Department, Modern Academy of Engineering and Technology, Maadi, Cairo, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces, Cairo, Egypt
| | - L I Soliman
- Basic Science Department, Modern Academy of Engineering and Technology, Maadi, Cairo, Egypt
| | - H H El-Bahnasawy
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - A H Ashour
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
Li Y, Chen S, Zhang K, Gu S, Cao J, Xia Y, Yang C, Sun W, Zhou Z. Highly efficient and stable photocatalytic properties of CdS/FeS nanocomposites. NEW J CHEM 2020. [DOI: 10.1039/d0nj01424a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CdS/FeS nanocomposites were successfully synthesized via a liquid-phase thermal decomposition of a single precursor and an ion adsorption method.
Collapse
Affiliation(s)
- Yu Li
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Shubin Chen
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Kejie Zhang
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology
| | - Siwen Gu
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Jing Cao
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Yuan Xia
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Changgen Yang
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Wu Sun
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- China
| | - Zhiping Zhou
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|