1
|
Saha P, Amanullah S, Barman S, Dey A. Electrochemical Reduction of CO 2 to CH 3OH Catalyzed by an Iron Porphyrinoid. J Am Chem Soc 2025; 147:1497-1507. [PMID: 39754564 DOI: 10.1021/jacs.4c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Designing catalysts for the selective reduction of CO2, resulting in products having commercial value, is an important area of contemporary research. Several molecular catalysts have been reported to facilitate the reduction of CO2 (both electrochemical and photochemical) to yield 2e-/2H+ electron-reduced products, CO and HCOOH, and selective reduction of CO2 beyond 2e-/2H+ is rare. This is partly because the factors that control the selectivity of CO2 reduction beyond 2e- are not yet understood. An iron chlorin complex with a pendent amine functionality in its second sphere, known to selectively catalyze CO2RR to HCOOH with a very low overpotential from its formal Fe(I) state, can catalyze CO2RR from its formal Fe(0) state by 6e-/6H+, forming CH3OH as a major product with a Faradaic yield of ∼50%. Mechanistic investigations using in situ spectro-electrochemistry indicate that the reactivity of a low-spin d7 FeI-COOH intermediate species generated during CO2RR is crucial in determining the product selectivity of this reaction. In weakly acidic conditions, C-protonation of this FeI-COOH species, which is also chemically prepared and spectroscopically characterized, leads to HCOOH. The O-protonation, leading to C-OH bond cleavage and eventually to CH3OH, is ∼3 kcal/mol higher in energy and can be achieved in more acidic solutions. Hydrogen bonding to the pendent amine in the catalyst stabilizes reactive intermediates formed in the CO2RR and enables 6e-/6H+ reduction of CO2 to CH3OH.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudip Barman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
2
|
Chen JM, Xie WJ, Yang ZW, He LN. Molecular Engineering of Copper Phthalocyanine for CO 2 Electroreduction to Methane. CHEMSUSCHEM 2024; 17:e202301634. [PMID: 37994392 DOI: 10.1002/cssc.202301634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Efficient electrochemical CO2 reduction reaction (ECO2RR) to multi-electron reductive products remains a great challenge. Herein, molecular engineering of copper phthalocyanines (CuPc) was explored by modifying electron-withdrawing groups (EWGs) (cyano, sulfonate anion) and electron-donating groups (EDGs) (methoxy, amino) to CuPc, then supporting onto carbon paper or carbon cloth by means of droplet coating, loading with carbon nanotubes and coating in polypyrrole (PPy). The results showed that the PPy-coated CuPc effectively catalysed ECO2RR to CH4. Interestingly, experimental results and DFT calculations indicated EWGs markedly improved the selectivity of methane for the reason that the introduction of EWGs reduces electron density of catalytic active center, resulting in a positive move to initial reduction potential. Otherwise, the modification of EDGs significantly reduces the selectivity towards methane. This electronic effect and heterogenization of CuPc are facile and effective molecular engineering, benefitting the preparation of electrocatalysts for further reduction of CO2.
Collapse
Affiliation(s)
- Jin-Mei Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Jun Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Wen Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
A Water Soluble Cobalt(II) Complex with 1,10-Phenanthroline, a Catalyst for Visible-Light-Driven Reduction of CO2 to CO with High Selectivity. Catal Letters 2022. [DOI: 10.1007/s10562-021-03782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Azaiza‐Dabbah D, Vogt C, Wang F, Masip‐Sánchez A, Graaf C, Poblet JM, Haviv E, Neumann R. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxide–Carbon Monoxide Transformation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dima Azaiza‐Dabbah
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| | - Charlotte Vogt
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| | - Fei Wang
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
| | - Albert Masip‐Sánchez
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
| | - Coen Graaf
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Josep M. Poblet
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
| | - Eynat Haviv
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| |
Collapse
|
6
|
Azaiza-Dabbah D, Vogt C, Wang F, Masip-Sánchez A, de Graaf C, Poblet JM, Haviv E, Neumann R. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxide-Carbon Monoxide Transformation. Angew Chem Int Ed Engl 2021; 61:e202112915. [PMID: 34842316 DOI: 10.1002/anie.202112915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Indexed: 11/09/2022]
Abstract
Carbon monoxide dehydrogenase (CODH) enzymes are active for the reversible CO oxidation-CO2 reduction reaction and are of interest in the context of CO2 abatement and carbon-neutral solar fuels. Bioinspired by the active-site composition of the CODHs, polyoxometalates triply substituted with first-row transition metals were modularly synthesized. The polyanions, in short, {SiM3 W9 } and {SiM'2 M''W9 }, M, M', M''=CuII , NiII , FeIII are shown to be electrocatalysts for reversible CO oxidation-CO2 reduction. A catalytic Tafel plot showed that {SiCu3 W9 } was the most reactive for CO2 reduction, and electrolysis reactions yielded significant amounts of CO with 98 % faradaic efficiency. In contrast, Fe-Ni compounds such as {SiFeNi2 W9 } preferably catalyzed the oxidation of CO to CO2 similar to what is observed for the [NiFe]-CODH enzyme. Compositional control of the heterometal complexes, now and in the future, leads to control of reactivity and selectivity for CO2 electrocatalytic reduction.
Collapse
Affiliation(s)
- Dima Azaiza-Dabbah
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Charlotte Vogt
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Fei Wang
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain
| | - Albert Masip-Sánchez
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain
| | - Coen de Graaf
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Josep M Poblet
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain
| | - Eynat Haviv
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
7
|
Du J, Yang H, Wang CL, Zhan SZ. Synthesis, structure, characterization, EPR investigation and catalytic behavior for hydrogen evolution of a bis(thiosemicarbazonato)-palladium complex. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Kholin KV, Khrizanforov MN, Babaev VM, Nizameeva GR, Minzanova ST, Kadirov MK, Budnikova YH. A Water-Soluble Sodium Pectate Complex with Copper as an Electrochemical Catalyst for Carbon Dioxide Reduction. Molecules 2021; 26:5524. [PMID: 34576996 PMCID: PMC8470637 DOI: 10.3390/molecules26185524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR) proceeds at -1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid materials and the performance (high activity and selectivity) of molecular catalysts.
Collapse
Affiliation(s)
- Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Guliya R. Nizameeva
- Department of Physics, Kazan National Research Technological University, 420015 Kazan, Russia;
| | - Salima T. Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Marsil K. Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
- Department of Physics, Kazan National Research Technological University, 420015 Kazan, Russia;
| |
Collapse
|
9
|
Yang H, Du J, Wang CL, Zhan SZ. Synthesis, structures, characterizations and catalytic behaviors for hydrogen evolution of copper(II) and copper(I) complexes supported by diiminodiphosphines. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 2021; 5:564-579. [PMID: 37117584 DOI: 10.1038/s41570-021-00289-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Carbon dioxide (CO2) is the iconic greenhouse gas and the major factor driving present global climate change, incentivizing its capture and recycling into valuable products and fuels. The 6H+/6e- reduction of CO2 affords CH3OH, a key compound that is a fuel and a platform molecule. In this Review, we compare different routes for CO2 reduction to CH3OH, namely, heterogeneous and homogeneous catalytic hydrogenation, as well as enzymatic catalysis, photocatalysis and electrocatalysis. We describe the leading catalysts and the conditions under which they operate, and then consider their advantages and drawbacks in terms of selectivity, productivity, stability, operating conditions, cost and technical readiness. At present, heterogeneous hydrogenation catalysis and electrocatalysis have the greatest promise for large-scale CO2 reduction to CH3OH. The availability and price of sustainable electricity appear to be essential prerequisites for efficient CH3OH synthesis.
Collapse
|
11
|
|
12
|
Shen D, Li X, Ma C, Zhou Y, Sun L, Yin S, Huo P, Wang H. Synthesized Z-scheme photocatalyst ZnO/g-C3N4 for enhanced photocatalytic reduction of CO2. NEW J CHEM 2020. [DOI: 10.1039/d0nj02270e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnO/g-C3N4 was prepared by carrying out a simple one-step calcination process.
Collapse
Affiliation(s)
- Dong Shen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Xin Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Changchang Ma
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yaju Zhou
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Linlin Sun
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Shikang Yin
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Pengwei Huo
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Huiqin Wang
- School of energy and power engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|