1
|
Pramanik S, Das AK, Debnath S, Maity S. Introducing Alkyl Selenocyanates as Bifunctional Reagents in Photoredox Catalysis: Divergent Access to Ambident Isomers of -SeCN. Org Lett 2024; 26:8447-8452. [PMID: 39172107 DOI: 10.1021/acs.orglett.4c02430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Owing to their diverse biological activities and versatility as synthetic precursors, organoselonocyanes categorize themselves as vital compounds. However, a limited reagent pool restricts their utility. In the present work, alkyl selenocyanates are hereby established as new bifunctional reagents for the simultaneous transfer of an alkyl group in addition to -SeCN. These reagents, when merged with photocatalysis, provide a key to accessing organoselenocyanates from feedstock olefins in an efficient and atom-economic fashion. A route to the analogous isoselenocyanate isomers facilitated by Lewis acid catalysis is also reported, presenting a divergent strategy for accessing both ambident isomers of -SeCN in an efficient manner.
Collapse
Affiliation(s)
- Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
| | - Avik Kr Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
| | - Saradindu Debnath
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand 826004, India
| |
Collapse
|
2
|
Timilsina MP, Stanfield MK, Smith JA, Thickett SC. Synthesis and Characterization of Thiol-Ene Networks Derived from Levoglucosenone. Chempluschem 2024; 89:e202400383. [PMID: 39190021 DOI: 10.1002/cplu.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/03/2024] [Indexed: 08/28/2024]
Abstract
Levoglucosenone (LGO), a renewable compound obtained from cellulose biomass, has been utilized to prepare novel monomers bearing alkene functional groups. These monomer derivatives of LGO were subsequently cured via ultraviolet (UV)-initiated radical thiol-ene "click" chemistry with commercially available multifunctional thiols to obtain colourless, optically transparent cross-linked thermosets. The monomers prepared in this work are unique due to utilising the internal double bond of the LGO ring during polymerization as part of the cross-linked network. The thermal and mechanical properties along with the degradation of thermosets containing both ether and ester linkages within the LGO monomers were studied. These thermosets had tensile strengths of 1.3-3.3 MPa, glass transition temperatures between 23.2 and 27.2 °C, and good thermal stability of up to 300 °C.
Collapse
Affiliation(s)
- Mahesh Prasad Timilsina
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Melissa K Stanfield
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Stuart C Thickett
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
3
|
Liu H, Laporte AG, Gónzalez Pinardo D, Fernández I, Hazelard D, Compain P. An Unexpected Lewis Acid-Catalyzed Cascade during the Synthesis of the DEF-Benzoxocin Ring System of Nogalamycin and Menogaril: Mechanistic Elucidation by Intermediate Trapping Experiments and Density Functional Theory Studies. J Org Chem 2024; 89:5634-5649. [PMID: 38554093 DOI: 10.1021/acs.joc.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
An unexpected Lewis acid-catalyzed carbohydrate rearrangement of a 1,5-bis-glycopyranoside to the product of a formal intramolecular C-aryl glycosylation reaction is reported. Mechanistic studies based mainly on intermediate trapping experiments and density functional theory (DFT) calculations reveal a cascade process involving three transient (a)cyclic oxocarbenium cations, the breaking of three single C(sp3)-O bonds, and the formation of three single bonds (i.e., exo-, endo-, and C-glycosidic bonds), leading to the 2,6-epoxybenzoxocine skeleton of bioactive natural glycoconjugates related to serjanione A and mimocaesalpin E. DFT calculations established that the generation of the pyran moiety embedded in the bridged benzoxocin ring system is likely to proceed through an unusual ring-closure of an ortho-quinone methide intermediate in which the attacking nucleophile is a carbonyl oxygen.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Daniel Gónzalez Pinardo
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
4
|
van der Westhuizen D, Castro AC, Hazari N, Gevorgyan A. Bulky, electron-rich, renewable: analogues of Beller's phosphine for cross-couplings. Catal Sci Technol 2023; 13:6733-6742. [PMID: 38026730 PMCID: PMC10680433 DOI: 10.1039/d3cy01375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
In recent years, considerable progress has been made in the conversion of biomass into renewable chemicals, yet the range of value-added products that can be formed from biomass remains relatively small. Herein, we demonstrate that molecules available from biomass serve as viable starting materials for the synthesis of phosphine ligands, which can be used in homogeneous catalysis. Specifically, we prepared renewable analogues of Beller's ligand (di(1-adamantyl)-n-butylphosphine, cataCXium® A), which is widely used in homogeneous catalysis. Our new renewable phosphine ligands facilitate Pd-catalysed Suzuki-Miyaura, Stille, and Buchwald-Hartwig coupling reactions with high yields, and our catalytic results can be rationalized based on the stereoelectronic properties of the ligands. The new phosphine ligands generate catalytic systems that can be applied for the late-stage functionalization of commercial drugs.
Collapse
Affiliation(s)
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo 0315 Oslo Norway
| | - Nilay Hazari
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Ashot Gevorgyan
- Department of Chemistry, UiT The Arctic University of Norway 9037 Tromsø Norway
| |
Collapse
|
5
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
6
|
Hornink MM, Rodrigues BG, Santos CS, Andrade LH. Continuous one-pot synthesis of new spiro-fused indoles from biobased building blocks using carbamoylation and imidation reactions under ultrasonic irradiation. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Shukla K, Arunagiri A, Muthukumar K. Synthesis and hydrolytic degradation of poly (glycerol succinate) based polyesters. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
8
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
9
|
Clarke JJ, Basemann K, Romano N, Lee SJ, Gagné MR. Borane- and Silylium-Catalyzed Difunctionalization of Carbohydrates: 3,6-Anhydrosugar Enabled 1,6-Site Selectivity. Org Lett 2022; 24:4135-4139. [PMID: 35653692 DOI: 10.1021/acs.orglett.2c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel diastereoselective, Lewis acid catalyzed 1,6-difunctionalization of galactose and mannose derivatives has been developed in one pot, via sequential nucleophile additions. Our studies point to the formation of a 3,6-anhydrosugar intermediate as key to the 1,6-site-selectivity. Starting material-specific reactivity occurs when competitive ring-opening C-O cleavage is possible, owed to basicity and stereoelectronic stabilization differences. Lastly, Mayr nucleophilicity parameter values helped predict which reaction conditions would be most suitable for specific nucleophiles.
Collapse
Affiliation(s)
- Joshua J Clarke
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin Basemann
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Neyen Romano
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Stephen J Lee
- U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709, United States
| | - Michel R Gagné
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
10
|
Camp JE, Greatrex BW. Levoglucosenone: Bio-Based Platform for Drug Discovery. Front Chem 2022; 10:902239. [PMID: 35711952 PMCID: PMC9194561 DOI: 10.3389/fchem.2022.902239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Levoglucosone (LGO) is a bio-privileged molecule that can be produced on scale from waste biomass. This chiral building block has been converted via well-established chemical processes into previously difficult-to-synthesize building blocks such as enantiopure butenolides, dihydropyrans, substituted cyclopropanes, deoxy-sugars and ribonolactones. LGO is an excellent starting material for the synthesis of biologically active compounds, including those which have anti-cancer, anti-microbial or anti-inflammatory activity. This review will cover the conversion of LGO to biologically active compounds as well as provide future research directions related to this platform molecule.
Collapse
Affiliation(s)
- Jason E. Camp
- Circa Sustainable Chemicals, York, United Kingdom
- *Correspondence: Jason E. Camp,
| | - Ben W. Greatrex
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
11
|
Xiao G, Su G, Slawin AMZ, Westwood N. From Biomass to the Karrikins
via
Selective Catalytic Oxidation of Hemicellulose‐Derived Butyl Xylosides and Glucosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ganyuan Xiao
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| | - Gerard Su
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| | - Alexandra M. Z. Slawin
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| | - Nicholas Westwood
- School of Chemistry and Biomedical Sciences Research Complex University of St Andrews and EaStCHEM North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
12
|
Lood K, Tikk T, Krüger M, Schmidt B. Methylene Capping Facilitates Cross-Metathesis Reactions of Enals: A Short Synthesis of 7-Methoxywutaifuranal from the Xylochemical Isoeugenol. J Org Chem 2022; 87:3079-3088. [PMID: 35037461 DOI: 10.1021/acs.joc.1c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four combinations of type-I olefins isoeugenol and 4-hydroxy-3-methoxystyrene with type-II olefins acrolein and crotonaldehyde were investigated in cross-metathesis (CM) reactions. While both type-I olefins are suitable CM partners for this transformation, we observed synthetically useful conversions only with type-II olefin crotonaldehyde. For economic reasons, isoeugenol, a cheap xylochemical available from renewable lignocellulose or from clove oil, is the preferred type-I CM partner. Nearly quantitative conversions to coniferyl aldehyde by the CM reaction of isoeugenol and crotonaldehyde can be obtained at ambient temperature without a solvent or at high substrate concentrations of 2 mol·L-1 with the second-generation Hoveyda-Grubbs catalyst. Under these conditions, the ratio of reactants can be reduced to 1:1.5 and catalyst loadings as low as 0.25 mol % are possible. The high reactivity of the isoeugenol/crotonaldehyde combination in olefin metathesis reactions was demonstrated by a short synthesis of the natural product 7-methoxywutaifuranal, which was obtained from isoeugenol in a 44% yield over five steps. We suggest that the superior performance of crotonaldehyde in the CM reactions investigated can be rationalized by "methylene capping", i.e., the steric stabilization of the propagating Ru-alkylidene species.
Collapse
Affiliation(s)
- Kajsa Lood
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Triin Tikk
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Mandy Krüger
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Zhang J, Sun T, Zhang Z, Cao H, Bai Z, Cao ZC. Nickel-Catalyzed Enantioselective Arylative Activation of Aromatic C-O Bond. J Am Chem Soc 2021; 143:18380-18387. [PMID: 34705442 DOI: 10.1021/jacs.1c09797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pioneering nickel-catalyzed cross-coupling of C-O electrophiles was unlocked by Wenkert in the 1970s; however, the transition-metal-catalyzed asymmetric activation of aromatic C-O bonds has never been reported. Herein the first enantioselective activation of an aromatic C-O bond is demonstrated via the catalytic arylative ring-opening cross-coupling of diarylfurans. This transformation is facilitated via nickel catalysis in the presence of chiral N-heterocyclic carbene ligands, and chiral 2-aryl-2'-hydroxy-1,1'-binaphthyl (ArOBIN) skeletons are delivered axially in high yields with high ee. Moreover, this versatile skeleton can be transformed into various synthetic useful intermediates, chiral catalysts, and ligands by using the CH- and OH-based modifiable sites. This chemistry features mild conditions and good atom economy.
Collapse
Affiliation(s)
- Jintong Zhang
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tingting Sun
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zishuo Zhang
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haiqun Cao
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhushuang Bai
- Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
14
|
Groß J, Grundke C, Rocker J, Arduengo AJ, Opatz T. Xylochemicals and where to find them. Chem Commun (Camb) 2021; 57:9979-9994. [PMID: 34522925 DOI: 10.1039/d1cc03512f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article surveys a range of important platform and high value chemicals that may be considered primary and secondary 'xylochemicals'. A summary of identified xylochemical substances and their natural sources is provided in tabular form. In detail, this review is meant to provide useful assistance for the consideration of potential synthetic strategies using xylochemicals, new methodologies and the development of potentially sustainable, xylochemistry-based processes. It should support the transition from petroleum-based approaches and help to move towards more sustainability within the synthetic community. This feasible paradigm shift is demonstrated with the total synthesis of natural products and active pharmaceutical ingredients as well as the preparation of organic molecules suitable for potential industrial applications.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Johannes Rocker
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Anthony J Arduengo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
15
|
Urruzuno I, Andrade-Sampedro P, Correa A. Late-Stage C-H Acylation of Tyrosine-Containing Oligopeptides with Alcohols. Org Lett 2021; 23:7279-7284. [PMID: 34477386 PMCID: PMC8453636 DOI: 10.1021/acs.orglett.1c02764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/13/2022]
Abstract
The selective tagging of amino acids within a peptide framework while using atom-economical C-H counterparts poses an unmet challenge within peptide chemistry. Herein, we report a novel Pd-catalyzed late-stage C-H acylation of a collection of Tyr-containing peptides with alcohols. This water-compatible labeling technique is distinguished by its reliable scalability and features the use of ethanol as a renewable feedstock for the assembly of a variety of peptidomimetics.
Collapse
Affiliation(s)
- Iñaki Urruzuno
- Department
of Organic Chemistry I, University of the
Basque Country (UPV/EHU), Joxe Mari Korta
R&D Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Paula Andrade-Sampedro
- Department
of Organic Chemistry I, University of the
Basque Country (UPV/EHU), Joxe Mari Korta
R&D Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Arkaitz Correa
- Department
of Organic Chemistry I, University of the
Basque Country (UPV/EHU), Joxe Mari Korta
R&D Center, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
16
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
17
|
Patil UP, Patil SS. Natural Feedstock in Catalysis: A Sustainable Route Towards Organic Transformations. Top Curr Chem (Cham) 2021; 379:36. [PMID: 34389903 DOI: 10.1007/s41061-021-00346-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Catalysts are the jewel in the crown of the chemical industry, accelerating reaction kinetics and augmenting the efficiency of desired reaction paths. Natural feedstock is a renewable resource capable of providing valuable functional products; in addition, it confers an opportunity to create catalysts. As an alternative to stoichiometric reagents, and as a part of a sustainable approach, the implications of using natural feedstocks as a source of new catalysts has attracted considerable interest. Natural feedstock-derived catalysts can promote chemical transformations more efficiently. Recent reports have highlighted the significant role of these biogenic, cost-effective, innocuous, biodegradable materials as catalysts in many biologically and pharmacologically important protocols. This review outlines the decisive organic transformations for which feedstock-derived catalysts have been employed effectively and successfully, along with their economic and environmental benefits over traditional catalytic systems.
Collapse
Affiliation(s)
- U P Patil
- Department of Chemistry, Arts, Commerce and Science College (Affiliated to Shivaji University, Kolhapur), Palus, Sangli, Maharastra, 416310, India.
| | - Suresh S Patil
- Synthetic Research Laboratory, PG Department of Chemistry, PDVP College (Affiliated to Shivaji University, Kolhapur), Tasgaon, Sangli, Maharastra, 416312, India
| |
Collapse
|
18
|
Fadlallah S, Flourat AL, Mouterde LMM, Annatelli M, Peru AAM, Gallos A, Aricò F, Allais F. Sustainable Hyperbranched Functional Materials via Green Polymerization of Readily Accessible Levoglucosenone-Derived Monomers. Macromol Rapid Commun 2021; 42:e2100284. [PMID: 34347323 DOI: 10.1002/marc.202100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Indexed: 01/20/2023]
Abstract
The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,β-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,β-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.
Collapse
Affiliation(s)
- Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Mattia Annatelli
- Department of Environmental Science, Informatics and Statistics, University Ca'Foscari of Venice, Via Torino155, Venezia Mestre, Venice, 30172, Italy
| | - Aurélien A M Peru
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Antoine Gallos
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Fabio Aricò
- Department of Environmental Science, Informatics and Statistics, University Ca'Foscari of Venice, Via Torino155, Venezia Mestre, Venice, 30172, Italy
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| |
Collapse
|
19
|
Pakora GA, Mann S, Kone D, Buisson D. Bioconversion of antifungal viridin to phytotoxin viridiol by environmental non-viridin producing microorganisms. Bioorg Chem 2021; 112:104959. [PMID: 33971564 DOI: 10.1016/j.bioorg.2021.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation of viridin, an antifungal produced by biocontrol agent, with non-viridin producing microorganisms is studied. The results show that some environmental non-targeted microorganisms are able to reduce it in the known phytotoxin viridiol, and its 3-epimer. Consequently, this reduction, which happens in some cases by detoxification mechanism, could be disastrous for the plant in a biocontrol of plant disease. However, a process fermentation/biotransformation could be an efficient approach for the preparation of this phytotoxin.
Collapse
Affiliation(s)
- Gilles-Alex Pakora
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS; CP54, 57 Rue Cuvier, 75005 Paris, France; Laboratoire de Pharmacodynamie Biochimique, UFR Biosciences, Université Félix Houphouët Boigny d'Abidjan (UFHB), 22 BP 582 Abidjan 22, Cote d'Ivoire.
| | - Stéphane Mann
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS; CP54, 57 Rue Cuvier, 75005 Paris, France
| | - Daouda Kone
- Laboratory Laboratoire de Physiologie Végétale, UFR Biosciences, Université Félix Houphouët-Boigny d'Abidjan (UFHB), 22 BP 582 Abidjan 22, Cote d'Ivoire
| | - Didier Buisson
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes (MCAM), Muséum national d'Histoire naturelle, CNRS; CP54, 57 Rue Cuvier, 75005 Paris, France.
| |
Collapse
|
20
|
Chen X, Song S, Li H, Gözaydın G, Yan N. Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass. Acc Chem Res 2021; 54:1711-1722. [PMID: 33576600 DOI: 10.1021/acs.accounts.0c00842] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organonitrogen chemicals are essential in many aspects of modern life. Over 80% of the top 200 prescribed pharmaceutical products contain at least one nitrogen atom in the molecule, while all top 10 agrochemicals contain nitrogen, just to name a few. At present, the prevailing industrial processes for manufacturing organonitrogen chemicals start from nonrenewable fossil resources, but eventually we have to make these chemicals in a more sustainable manner. Biomass represents the largest renewable carbon resource on earth, which is inexpensive and widely available. Integrating biomass into the organonitrogen chemical supply chain will mitigate the carbon footprint, diversify the product stream, and enhance the economic competitiveness of biorefinery. Short-cut synthesis routes can be created for oxygen-containing organonitrogen compounds by exploiting the inherent oxygen functionalities in the biomass resources. Moreover, for nitrogen-containing biomass components such as chitin, a unique opportunity to make organonitrogen chemicals bypassing the energy-intensive Haber-Bosch ammonia synthesis process arises. Estimated at 100 billion tons of annual production in the world, chitin captures more nitrogen than the Haber-Bosch process in the form of amide functional groups in its polymer side chain.In this Account, we intend to summarize our efforts to establish new reaction routes to synthesize valuable organonitrogen chemicals from renewable resources. Enabled by tailor-designed catalytic systems, diverse nitrogen-containing products including amines, amino acids, nitriles, and N-heterocycles have been obtained from a range of biomass feedstock either directly or via intermediate platform compounds. Two strategies to produce organonitrogen chemicals are presented. For platform chemicals derived from cellulose, hemicellulose, lignin, and lipids, which are enriched with oxygen functionalities, in particular, hydroxyl groups, the key chemistry to be developed is the catalytic transformation of hydroxyl groups into nitrogen-containing groups using NH3 as the nitrogen source. Along this line, Ru- and Ni-based heterogeneous catalysts are developed to convert alcohols to amines and/or nitriles via a thermal catalytic pathway, while CdS nanomaterials are explored to promote -OH to -NH2 conversion under visible-light irradiation. Metal-zeolite multifunctional systems are further established to enable the synthesis of N-heterocycles from O-heterocycles. The second strategy involves the use of chitin and chitin derivatives as the starting materials. Under the concept of shell biorefinery, distinctive protocols have been established to chemically transform chitin as the sole feedstock to amino sugars, amino alcohols, furanic amides, and N-heterocycles. By combining mechanochemistry with biotransformation, an integrated process to convert shrimp shell waste to complex, high-value, chiral compounds including tyrosine and l-DOPA is also demonstrated.
Collapse
Affiliation(s)
- Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Song Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Haoyue Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Gökalp Gözaydın
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
21
|
Increased Revenue with High Value-Added Products from Cashew Apple (Anacardium occidentale L.)—Addressing Global Challenges. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02623-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Afanasenko A, Barta K. Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: Present and perspectives. iScience 2021; 24:102211. [PMID: 33733071 PMCID: PMC7941040 DOI: 10.1016/j.isci.2021.102211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lignin, the richest source of renewable aromatics on the planet, is an intriguing raw material for the construction of value-added aromatics. In the past decade, much progress has been made regarding the development of efficient lignin depolymerization methods, able to produce specific monophenol derivatives in high-enough selectivity and yields. This now serves as an excellent basis for developing powerful downstream conversion strategies toward a wide range of products, including fine chemical building blocks. The inherent structural features of lignin-derived platform chemicals undoubtedly inspire the development of novel, creative, atom-economic synthetic routes toward biologically active molecules or natural products. In this perspective we attempt to bridge the structural features of lignin-derived platform chemicals with existing synthetic strategies toward the construction of heterocycles and provide a summary of efforts for the production of natural products from aromatics that can be, in principle, obtained from lignin. Last, we comment on the latest efforts that present entire value-chains from wood to valuable pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Anastasiia Afanasenko
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
23
|
Palenzuela M, Sánchez-Roa D, Damián J, Sessini V, Mosquera ME. Polymerization of terpenes and terpenoids using metal catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
|
25
|
Cao Y, Chen X, Feng S, Wan Y, Luo J. Nanofiltration for Decolorization: Membrane Fabrication, Applications and Challenges. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
26
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Padilha CEDA, Nogueira CDC, Matias SCB, Costa Filho JDBD, Souza DFDS, Oliveira JAD, Santos ESD. Fabrication of hollow polymer microcapsules and removal of emulsified oil from aqueous environment using soda lignin nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Stakanovs G, Mishnev A, Rasina D, Jirgensons A. A Concise Bioinspired Semisynthesis of Rumphellaones A-C and Their C-8 Epimers from β-Caryophyllene. JOURNAL OF NATURAL PRODUCTS 2020; 83:2004-2009. [PMID: 32538090 DOI: 10.1021/acs.jnatprod.0c00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first semisynthetic route toward rumphellaones B (2) and C (3) and their C-8 epimers as well as the shortest synthesis of rumphellaone A (1) and its C-8 epimer from the most accessible sesquiterpene, β-caryophyllene (4), is presented. Synthetic routes involved caryophyllonic acid as a key intermediate, which was converted to rumphellaone A (and epimer) via acid-catalyzed lactonization and rumphellaone C (and epimer) using one-pot epoxidation-lactonization. Rumphellaone B (2) and its epimer were obtained from rumphellaone A (1) and its epimer, respectively, using Saegusa-Ito oxidation. The absolute configuration at C-8 was confirmed by single-crystal X-ray analysis of rumphellaone B (2) and an acylated derivative of rumphellaone C.
Collapse
Affiliation(s)
- Georgijs Stakanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Dace Rasina
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| |
Collapse
|
29
|
Kalvet I, Deckers K, Funes‐Ardoiz I, Magnin G, Sperger T, Kremer M, Schoenebeck F. Selective ortho-Functionalization of Adamantylarenes Enabled by Dispersion and an Air-Stable Palladium(I) Dimer. Angew Chem Int Ed Engl 2020; 59:7721-7725. [PMID: 32065717 PMCID: PMC7317867 DOI: 10.1002/anie.202001326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/16/2020] [Indexed: 12/15/2022]
Abstract
Contrary to the general belief that Pd-catalyzed cross-coupling at sites of severe steric hindrance are disfavored, we herein show that the oxidative addition to C-Br ortho to an adamantyl group is as favored as the corresponding adamantyl-free system due to attractive dispersion forces. This enabled the development of a fully selective arylation and alkylation of C-Br ortho to an adamantyl group, even if challenged with competing non-hindered C-OTf or C-Cl sites. The method makes use of an air-stable PdI dimer and enables straightforward access to diversely substituted therapeutically important adamantylarenes in 5-30 min.
Collapse
Affiliation(s)
- Indrek Kalvet
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Kristina Deckers
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Guillaume Magnin
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Theresa Sperger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marius Kremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
30
|
Fadlallah S, Mouterde LMM, Garnier G, Saito K, Allais F. Cellulose-Derived Levoglucosenone, a Great Versatile Chemical Platform for the Production of Renewable Monomers and Polymers. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1373.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51100 Pomacle, France
| | - Louis M. M. Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51100 Pomacle, France
| | - Gil Garnier
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51100 Pomacle, France
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton 3800, VIC, Australia
| | - Kei Saito
- School of Chemistry, BioPRIA, Monash University, Clayton 3800, VIC, Australia
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51100 Pomacle, France
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton 3800, VIC, Australia
| |
Collapse
|