1
|
Wang Y, Pan Q, Qiao Y, Wang X, Deng D, Zheng F, Chen B, Qiu J. Layered Metal Oxide Nanosheets with Enhanced Interlayer Space for Electrochemical Deionization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210871. [PMID: 36645218 DOI: 10.1002/adma.202210871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical deionization is regarded as one of the promising water treatment technologies. Here, CoAl-layered metal oxide nanosheets intercalated by sodium dodecyl sulfate (SDS) with an enhanced interlayer spacing from 0.76 to 1.33 nm are synthesized and used as an anode. The enlarged interlayer spacing provides an enhanced ion-diffusion channel and improves the utilization of the interlayer electroactive sites, while heat treatment, transferring layered double hydroxides to layered metal oxides (LMOs), offers additional active oxidation reaction sites to facilitate the electro-sorption rate, contributing to the high salt adsorption capacity (31.78 mg g-1 ) and average salt adsorption rate (3.75 mg g-1 min-1 ) at 1.2 V in 500 mg L-1 NaCl solution. In addition, the excellent long-term cycling stability (92.9%) after 40 cycles proves the strong electronic interaction between SDS and the host layer, which is validated by density functional theory calculations later on. Moreover, the electro-sorption mechanism of LMOs that originated from the reconstruction of the layered structure based on the "memory effect" is revealed according to the X-ray photoelectron spectroscopy peak shifts of Co element. This strategy of expanding the interlayer spacing combined with heat treatment makes LMOs a competitive candidate for electrochemical water deionization.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Qianfeng Pan
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Yixuan Qiao
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Dingfei Deng
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Fenghua Zheng
- School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, China
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Lu W, Wei Z, Guo W, Yan C, Ding Z, Wang C, Huang G, Rotello VM. Shaping Sulfur Precursors to Low Dimensional (0D, 1D and 2D) Sulfur Nanomaterials: Synthesis, Characterization, Mechanism, Functionalization, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301095. [PMID: 36978248 DOI: 10.1002/smll.202301095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Low-dimensional sulfur nanomaterials featuring with 0D sulfur nanoparticles (SNPs), sulfur nanodots (SNDs) and sulfur quantum dots (SQDs), 1D sulfur nanorods (SNRs), and 2D sulfur nanosheets (SNSs) have emerged as an environmentally friendly, biocompatible class of metal-free nanomaterials, sparking extensive interest in a wide range application. In this review, various synthetic methods, precise characterization, creative formation mechanism, delicate functionalization, and versatile applications of low dimensional sulfur nanomaterials over the last decades are systematically summarized. Initially, it is striven to summarize the progress of low dimensional sulfur nanomaterials from versatile precursors by using different synthetic approaches and various characterization. Then, a multi-faceted proposed formation mechanism with emphasis on how these different precursors produce corresponding SNPs, SNDs, SQDs, SNRs, and SNSs is highlighted. Besides, it is essential to fine-tune the surface functional groups of low dimensional sulfur nanomaterials to form new complex nanomaterials. Finally, these sulfur nanomaterials are being investigated in bio-sensing, bio-imaging, lithium-sulfur batteries, antibacterial activities, plant growth along with future perspective and challenges in emerging fields. The purpose of this review is to tailor low dimensional nanomaterials through accurately selecting precursors or synthetic approach and provide a foundation for the formation of versatile sulfur nanostructure.
Collapse
Affiliation(s)
- Wenyi Lu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Zitong Wei
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Wenxuan Guo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chengcheng Yan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Zhaolong Ding
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Guoyong Huang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Ding C, Guo J, Gan W, Chen P, Li Z, Yin Z, Qi S, Deng S, Zhang M, Sun Z. Ag nanoparticles decorated Z-scheme CoAl-LDH/TiO2 heterojunction photocatalyst for expeditious levofloxacin degradation and Cr(VI) reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Shao B, Liu Z, Tang L, Liang Q, He Q, Wu T, Pan Y, Cheng M, Liu Y, Tan X, Tang J, Wang H, Feng H, Tong S. Construction of Bi 2WO 6/CoAl-LDHs S-scheme heterojunction with efficient photo-Fenton-like catalytic performance: Experimental and theoretical studies. CHEMOSPHERE 2022; 291:133001. [PMID: 34808205 DOI: 10.1016/j.chemosphere.2021.133001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The photo-Fenton-like catalytic process has shown great application potential in environmental remediation. Herein, a novel photo-Fenton-like catalyst of Bi2WO6 nanosheets decorated hortensia-like CoAl-layered double hydroxides (Bi2WO6/CoAl-LDHs) was synthesized via hydrothermal process. The optimized Bi2WO6/CoAl-LDHs composite performed the high-efficiency photo-Fenton-like catalytic performance for oxytetracycline (OTC) removal (98.47%) in the mediation of visible-light and H2O2. The comparative experiment, technical characterization and density functional theory calculation results indicated that the efficient photo-Fenton-like catalytic performance of Bi2WO6/CoAl-LDHs was attributed to the synergistic action of the Fenton-like process of cobalt ions in CoAl-LDHs, an internal electric field and the S-scheme heterojunction form between Bi2WO6 and CoAl-LDHs, which could significantly promote the active substance formation and the photocatalytic process in the catalytic system. This study will stimulate the new inspiration of designing the efficient catalytic system for environmental remediation and other fields.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shehua Tong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
5
|
Chang Q, Zhang X, Wang B, Niu J, Yang Z, Wang W. Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. NANOSCALE 2022; 14:1107-1122. [PMID: 34985485 DOI: 10.1039/d1nr07355a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) composed of octahedral ligand units centered with various transition metal atoms display unique electronic structures and thus attract significant attention in the field of electrocatalytic oxygen evolution reactions (OER). Intensive experimental explorations have therefore been carried out to investigate the LDHs synthesis, amorphous control, intrinsic material modifications, interfacing with other phases, strain, etc. There is still the need for a fundamental understanding of the structure-property relations, which could hinder the design of the next generation of the LDHs catalysts. In this review, we firstly provide the crystal structure information accompanied by the corresponding electronic structures. Then, we discuss the conflicts of the active sites on the NiFe LDHs and propose the synergistic cooperation among the ligand units during OER to deliver a different angle for understanding the current structure-property relations beyond the single-site-based catalysis process. In the next section of the OER process, the linear relationship-induced theoretical limit of the overpotential is further discussed based on the fundamental aspects. To break up the linear relations, we have summarized the current strategies for optimizing the OER performance. Lastly, based on the understanding gained above, the perspective of the research challenges and opportunities are proposed.
Collapse
Affiliation(s)
- Qingfang Chang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, People's Republic of China.
| | - Xilin Zhang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, People's Republic of China.
| | - Bin Wang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Zongxian Yang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, People's Republic of China.
| | - Weichao Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Islam DA, Acharya H. Pd-Nanoparticles@Layered Double Hydroxide/ Reduced Graphene Oxide (Pd NPs@LDH/rGO) Nanocomposite Catalyst for Highly Efficient Green Reduction of Aromatic Nitro Compounds. NEW J CHEM 2022. [DOI: 10.1039/d1nj05377a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile chemical method is developed to fabricate well-dispersed and an approx. 5 nm sized Pd-nanoparticles (Pd-NPs) deposited ZnAl-LDH/rGO nanocomposite (Pd NPs@LDH/rGO) as a highly efficient and stable catalyst for...
Collapse
|
7
|
Constructing an efficient conductive network with carbon-based additives in metal hydroxide electrode for high-performance hybrid supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Jin H, Sun Y, Sun Z, Yang M, Gui R. Zero-dimensional sulfur nanomaterials: Synthesis, modifications and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213913] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
|
10
|
Wang D, Liu Z, Hong Y, Lin C, Pan Q, Li L, Shi K. Controlled preparation of multiple mesoporous CoAl-LDHs nanosheets for the high performance of NO x detection at room temperature. RSC Adv 2020; 10:34466-34473. [PMID: 35514368 PMCID: PMC9056767 DOI: 10.1039/d0ra06250b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 01/05/2023] Open
Abstract
By fine tuning the metal mole ratio, CoAl-LDHs (CA) with a 2D nanosheet structure were successfully prepared via a one-step hydrothermal method using urea as both precipitator and pore-forming agent. The morphology of CA samples shows uniform and thin porous hexagonal nanosheets. In particular, CA2-1, prepared with the 2 : 1 molar ratio for Co and Al, respectively, has the highest surface area (54 m2 g-1); its average transverse size of platelets is 2.54 μm with a thickness of around 19.30 nm and inter-plate spacing of about 0.2 μm. The sample exhibits a high sensing performance (response value of 17.09) towards 100 ppm NO x , fast response time (4.27 s) and a low limit of detection (down to 0.01 ppm) at room temperature. Furthermore, CA2-1 shows long -term stability (60 days) and a better selectivity towards NO x at room temperature. The excellent performance of the fabricated sensor is attributed to the special hexagonal structure of the 2D thin nanosheets with abundant mesopores, where the active sites provide fast adsorption and transportation channels, promote oxygen chemisorption, and eventually decrease the diffusion energy barrier for NO x molecules. Furthermore, hydrogen bonds between water molecules and OH- could serve as a bridge, thus providing a channel for rapid electron transfer. This easy synthetic approach and good gas sensing performance allow CoAl-LDHs to be great potential materials in the field of NO x gas sensing.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
| | - Zhi Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
| | - Ye Hong
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
| | - Chong Lin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University Harbin 150080 P. R. China +86 451 8660 4920
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Physical Chemistry, School of Chemistry and Material Science, Heilongjiang University Harbin 150080 P. R. China +86 451 86609141
| |
Collapse
|