1
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Zeng W, Yue X, Dai Z. Ultrasound contrast agents from microbubbles to biogenic gas vesicles. MEDICAL REVIEW (2021) 2023; 3:31-48. [PMID: 37724107 PMCID: PMC10471104 DOI: 10.1515/mr-2022-0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/11/2022] [Indexed: 09/20/2023]
Abstract
Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features: such as non-toxicity, intravenous injectability, ability to cross the pulmonary capillary bed, and significant enhancement of echo signals for the duration of the examination, resulting in essential preclinical and clinical applications. The use of microbubbles functionalized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging. Nevertheless, it is very challenging to utilize targeted microbubbles for molecular imaging of extravascular targets due to their size. A series of acoustic nanomaterials have been developed for breaking free from this constraint. Especially, biogenic gas vesicles, gas-filled protein nanostructures from microorganisms, were engineered as the first biomolecular ultrasound contrast agents, opening the door for more direct visualization of cellular and molecular function by ultrasound imaging. The ordered protein shell structure and unique gas filling mechanism of biogenic gas vesicles endow them with excellent stability and attractive acoustic responses. What's more, their genetic encodability enables them to act as acoustic reporter genes. This article reviews the upgrading progresses of ultrasound contrast agents from microbubbles to biogenic gas vesicles, and the opportunities and challenges for the commercial and clinical translation of the nascent field of biomolecular ultrasound.
Collapse
Affiliation(s)
- Wenlong Zeng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
3
|
Liu R, Xu Y, Zhang N, Qu S, Zeng W, Li R, Dai Z. Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
4
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
5
|
Wang Y, Feng Y, Yang X, Wang W, Wang Y. Diagnosis of Atherosclerotic Plaques Using Vascular Endothelial Growth Factor Receptor-2 Targeting Antibody Nano-microbubble as Ultrasound Contrast Agent. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6524592. [PMID: 35572831 PMCID: PMC9098277 DOI: 10.1155/2022/6524592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023]
Abstract
The atherosclerotic plaque is characterized by narrowing of blood vessels and reduced blood flow leading to the insufficient blood supply to the brain. The hemodynamic changes caused by arterial stenosis increase the shearing force of the fibrous cap on the surface of the plaque, thereby reducing the stability of the plaque. Unstable plaques are more likely to promote angiogenesis and increase the risk of patients with cerebrovascular diseases. A timely understanding of the formation and stability of the arterial plaque can guide in taking targeted measures for reducing the risk of acute stroke in patients. It has been confirmed that nano-microbubbles can enter these plaques through the gaps in the patient's vascular endothelial cells, thereby enhancing the acquisition of ultrasound information for plaque visualization. Therefore, we aim to investigate the diagnostic value of targeted nano-microbubbles for atherosclerotic plaques. This study constructed vascular endothelial growth factor receptor-2 (VEGFR-2) targeting antibody nano-microbubbles and compared its diagnostic value with that of blank nano-microbubbles for atherosclerotic plaques. Studies have found that VEGFR-2 targeting antibody nano-microbubbles can accurately detect the position of plaques. Its detection rate, sensitivity, and specificity for plaques are higher than those of blank nano-microbubbles. Similarly, the peak intensity and average transit time of VEGFR-2 targeting antibody nano-microbubbles were greater than those of blank nano-microbubbles. Therefore, we believe that the combination of VEGFR-2 antibody and nano-microbubbles can enhance the acquisition of ultrasound information on atherosclerotic plaque neovascularization, thereby improving the early diagnosis of unstable plaque.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Yujin Feng
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Xiaoyun Yang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Wengang Wang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Yueheng Wang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| |
Collapse
|
6
|
Luo H, Yu W, Chen S, Wang Z, Tian Z, He J, Liu Y. Application of metalloporphyrin sensitizers for the treatment or diagnosis of tumors. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
At present, metalloporphyrin compounds demonstrate three main uses as anticancer sensitizers: (1) photosensitizers, (2) photothermal conversion agents, and (3) ultrasound sensitizers. Developing efficient sensitizers for cancer with excellent controllability and biocompatibility is an important goal of oncology medicine. Because of the different structural diversity of anticancer sensitizers, such sensitizers are used for treating cancers by employing a variety of tumor treatment methods such as mature photodynamic therapy, commonly used clinically photothermal therapy and promising sonodynamic therapy. Among the many sensitizers, metalloporphyrin-complex sensitizers attract wide attention due to their excellent performance in tumor treatment and diagnosis. This review briefly describes some metalloporphyrin anticancer drugs and diagnostic agents related to photodynamic, photothermal and sonodynamic therapy, and discusses the roles of metal atoms in these drugs.
Collapse
Affiliation(s)
- Hongyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Wenmei Yu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Si Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Zejie Tian
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Yunmei Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
7
|
Huang L, Yang J, Wang T, Gao J, Xu D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J Nanobiotechnology 2022; 20:49. [PMID: 35073914 PMCID: PMC8785568 DOI: 10.1186/s12951-022-01257-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
AbstractA widely established prodrug strategy can effectively optimize the unappealing properties of therapeutic agents in cancer treatment. Among them, lipidic prodrugs extremely uplift the physicochemical properties, site-specificity, and antitumor activities of therapeutic agents while reducing systemic toxicity. Although great perspectives have been summarized in the progress of prodrug-based nanoplatforms, no attention has been paid to emphasizing the rational design of small-molecule lipidic prodrugs (SLPs). With the aim of outlining the prospect of the SLPs approach, the review will first provide an overview of conjugation strategies that are amenable to SLPs fabrication. Then, the rational design of SLPs in response to the physiological barriers of chemotherapeutic agents is highlighted. Finally, their biomedical applications are also emphasized with special functions, followed by a brief introduction of the promising opportunities and potential challenges of SLPs-based drug delivery systems (DDSs) in clinical application.
Graphical Abstract
Collapse
|
8
|
Sun L, Zhang J, Xu M, Zhang L, Tang Q, Chen J, Gong M, Sun S, Ge H, Wang S, Liang X, Cui L. Ultrasound Microbubbles Mediated Sonosensitizer and Antibody Co-delivery for Highly Efficient Synergistic Therapy on HER2-Positive Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:452-463. [PMID: 34961307 DOI: 10.1021/acsami.1c21924] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trastuzumab combined with chemotherapy is the first-line treatment for advanced HER2-positive gastric cancer, but it still suffers from limited therapeutic efficiency and serious side effects, which are usually due to the poor delivery efficiency and the drug resistance of tumor cells to the chemotherapeutic drugs. Herein, a type of ultrasound microbubble for simultaneous delivery of sonosensitizers and therapeutic antibodies to achieve targeting combination of sonodynamic therapy and antibody therapy of HER2-positive gastric cancer was constructed from pyropheophorbide-lipid followed by trastuzumab conjugation (TP MBs). In vitro and in vivo studies showed that TP MBs had good biological safety, and their in vivo delivery can be monitored by ultrasound/fluorescence bimodal imaging. With ultrasound (US) located at the tumor area, TP MBs can be converted into nanoparticles (TP NPs) in situ by US-targeted microbubble destruction; plus the enhanced permeability and retention effects and the targeting effects of trastuzumab, the enrichment of sonosensitizers and antibodies in the tumor tissue can be greatly enhanced (∼2.1 times). When combined with ultrasound, TP MBs can not only increase the uptake of sonosensitizers in HER2-positive gastric cancer NCI-N87 cells but also efficiently generate singlet oxygen to greatly increase the killing effect on cells, obviously inhibiting the tumor growth in HER2-positive gastric cancer NCI-N87 cell models with a tumor inhibition rate up to 79.3%. Overall, TP MBs combined with US provided an efficient way for co-delivery of sonosensitizers and antibodies, greatly enhancing the synergistic therapeutic effect on HER2-positive gastric cancer while effectively reducing the side effects.
Collapse
Affiliation(s)
- Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Huiyu Ge
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
- Department of Ultrasound Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| |
Collapse
|
9
|
Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_8-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Zhao Z, Lin X, Zhang L, Liu X, Wang Q, Shi Y, Cui G, Cai H, Chen Y, Li Y, Hu A, Zhang Z, Liu J, Xie H, Zheng T, Liang X, Shuai X, Chen Y, Sun D. Lipidated Methotrexate Microbubbles: A Promising Rheumatoid Arthritis Theranostic Medicine Manipulated via Ultrasonic Irradiation. J Biomed Nanotechnol 2021; 17:1293-1304. [PMID: 34446133 DOI: 10.1166/jbn.2021.3105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
De novo designed lipidated methotrexate was synthesized and self-assembled into microbubbles for targeted rheumatoid arthritis theranostic treatment. Controlled lipidatedmethotrexate delivery was achieved by ultrasound-targetedmicrobubble destruction technique. Methotrexate was dissociated inflammatory microenvironment of synovial cavity, owing to representive low pH and enriched leucocyte esterase. We first manipulated methotrexate controlled release with RAW 264.7 cell line in vitro and further verified with rheumatoid arthritis rabbits in vivo. Results showed that lipidated methotrexate microbubbles precisely affected infection focus and significantly enhanced rheumatoid arthritis curative effect comparing with dissociative methotrexate. This study indicates that lipidated methotrexate microbubbles might be considered as a promising rheumatoid arthritis theranostics medicine.
Collapse
Affiliation(s)
- Zhuofei Zhao
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Xiaona Lin
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Lulu Zhang
- Department of Ultrasonography, Peking University Third Hospital, Beijing, 100191, China
| | - Xia Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Qingwen Wang
- Department of Rheumatology, Peking University Shenzhen Hospital, Institute of Immune and Inflammatory Diseases, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Guanghui Cui
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Huali Cai
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yan Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yongbin Li
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Azhen Hu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Zhuxia Zhang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Jun Liu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Haiqin Xie
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Tingting Zheng
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Xiaolong Liang
- Department of Ultrasonography, Peking University Third Hospital, Beijing, 100191, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Desheng Sun
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| |
Collapse
|
12
|
Lu HS, Wang MY, Ying FP, Lv YY. Manganese(III) porphyrin oligomers as high-relaxivity MRI contrast agents. Bioorg Med Chem 2021; 35:116090. [PMID: 33639594 DOI: 10.1016/j.bmc.2021.116090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Manganese(III) porphyrins (MnIIIPs) as MRI contrast agents (CAs) have drawn particular attention due to their high longitudinal relaxivity (r1) and unique biodistribution. In this work, two MnIIIP-based oligomers, MnPD and MnPT, were designed to further improve the relaxivity with ease of synthesis. The two compounds were fully characterized and their nuclear magnetic relaxation dispersion (NMRD) profiles were acquired with a fast field cycling NMR relaxometer. Both of the compounds exhibited extended high molar r1 at high fields, higher than that of Gd-DTPA, the first clinical gadolinium(III)-based MRI CA. The r1 value of per manganese atom increased with the increasing number of MnIIIP building blocks, suggesting rotational correlation time (τR) played dominant role in the r1 dispersion. The toxicity of the two MnIIIPs and the imaging effectiveness were estimated in vitro and in vivo. With good biocompatibility, significant contrast enhancement, and complete excretion in 24 h, MnPD and MnPT are both promising for high field clinical applications. The applied strategy also potentially provided a facile approach for creation of more MnIIIP oligomer as efficient T1 MRI CAs.
Collapse
Affiliation(s)
- Hui-Shan Lu
- School of Medicine, Zhejiang University City College, Zhejiang, Hangzhou 310015, PR China; College of Pharmacy, Zhejiang University, Zhejiang, Hangzhou 310027, PR China
| | - Meng-Yi Wang
- School of Medicine, Zhejiang University City College, Zhejiang, Hangzhou 310015, PR China
| | - Fei-Peng Ying
- School of Medicine, Zhejiang University City College, Zhejiang, Hangzhou 310015, PR China; College of Pharmacy, Zhejiang University, Zhejiang, Hangzhou 310027, PR China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Zhejiang, Hangzhou 310015, PR China.
| |
Collapse
|
13
|
Li R, Chen Z, Dai Z, Yu Y. Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0328. [PMID: 33755377 PMCID: PMC8185853 DOI: 10.20892/j.issn.2095-3941.2020.0328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Drug resistance is considered the most important reason for the clinical failure of cancer chemotherapy. Circumventing drug resistance and improving the efficacy of anticancer agents remains a major challenge. Over the past several decades, photodynamic therapy (PDT) and sonodynamic therapy (SDT) have attracted substantial attention for their efficacy in cancer treatment, and have been combined with chemotherapy to overcome drug resistance. However, simultaneously delivering sensitizers and chemotherapy drugs to same tumor cell remains challenging, thus greatly limiting this combinational therapy. The rapid development of nanotechnology provides a new approach to solve this problem. Nano-based drug delivery systems can not only improve the targeted delivery of agents but also co-deliver multiple drug components in single nanoparticles to achieve optimal synergistic effects. In this review, we briefly summarize the mechanisms of drug resistance, discuss the advantages and disadvantages of PDT and SDT in reversing drug resistance, and describe state-of-the-art research using nano-mediated PDT and SDT to solve these refractory problems. This review also highlights the clinical translational potential for this combinational therapy.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhimin Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yingjie Yu
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518039, China
| |
Collapse
|
14
|
Xiaoting ZBS, Zhifei DP. Micro/Nanobubbles Driven Multimodal Imaging and Theragnostics of Cancer. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
16
|
Ren Y, Sedgwick AC, Chen J, Thiabaud G, Chau CV, An J, Arambula JF, He XP, Kim JS, Sessler JL, Liu C. Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light. J Am Chem Soc 2020; 142:16156-16160. [PMID: 32914968 DOI: 10.1021/jacs.0c04387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NIR absorptivity of the metallotexaphyrin derivatives MMn, MGd, and MLu for photoacoustic (PA)-based imaging is explored in this study. All three complexes demonstrated excellent photostabilities; however, MMn provided the greatest PA signal intensities in both doubly distilled water and RAW 264.7 cells. In vivo experiments using a prostate tumor mouse model were performed. MMn displayed no adverse toxicity to major organs as inferred from hematoxylin and eosin (H&E) staining and cell blood count testing. MMn also allowed for PA-based imaging of tumors with excellent in vivo stability to provide 3D tumor diagnostic information. Based on the present findings and previous magnetic resonance imaging (MRI) studies, we believe MMn may have a role to play either as a stand-alone PA contrast agent or as a single molecule dual modal (PA and MR) imaging agent for tumor diagnosis.
Collapse
Affiliation(s)
- Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Gregory Thiabaud
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
- OncoTEX, Inc., Austin, Texas 78701, United States
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|