1
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
2
|
Choi D, Gwon K, Hong HJ, Baskaran H, Calvo-Lozano O, Gonzalez-Suarez AM, Park K, de Hoyos-Vega JM, Lechuga LM, Hong J, Stybayeva G, Revzin A. Coating Bioactive Microcapsules with Tannic Acid Enhances the Phenotype of the Encapsulated Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10.1021/acsami.2c06783. [PMID: 35658394 PMCID: PMC10314364 DOI: 10.1021/acsami.2c06783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human pluripotent stem cells (hPSCs) may be differentiated into any adult cell type and therefore hold incredible promise for cell therapeutics and disease modeling. There is increasing interest in three-dimensional (3D) hPSC culture because of improved differentiation outcomes and potential for scale up. Our team has recently described bioactive heparin (Hep)-containing core-shell microcapsules that promote rapid aggregation of stem cells into spheroids and may also be loaded with growth factors for the local and sustained delivery to the encapsulated cells. In this study, we explored the possibility of further modulating bioactivity of microcapsules through the use of an ultrathin coating composed of tannic acid (TA). Deposition of the TA film onto model substrates functionalized with Hep and poly(ethylene glycol) was characterized by ellipsometry and atomic force microscopy. Furthermore, the presence of the TA coating was observed to increase the amount of basic fibroblast growth factor (bFGF) incorporation by up to twofold and to extend its release from 5 to 7 days. Most significantly, TA-microcapsules loaded with bFGF induced higher levels of pluripotency expression compared to uncoated microcapsules containing bFGF. Engineered microcapsules described here represent a new stem cell culture approach that enables 3D cultivation and relies on local delivery of inductive cues.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBERBBN and BIST, Barcelona 08193, Spain
| | - Alan M Gonzalez-Suarez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBERBBN and BIST, Barcelona 08193, Spain
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
3
|
Han U, Kim W, Cha H, Park JH, Hong J. Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body. iScience 2021; 24:102297. [PMID: 33851104 PMCID: PMC8022842 DOI: 10.1016/j.isci.2021.102297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Individual cell environment stimulating single cell is a suitable strategy for the generation of sophisticated multicellular aggregates with localized biochemical signaling. However, such strategy for induced pluripotent stem cell (iPSC)-derived embryoid bodies (EBs) is limited because the presence of external stimulation can inhibit spontaneous cellular communication, resulting in misdirection in the maturation and differentiation of EBs. In this study, a facile method of engineering the iPSC membrane to stimulate the inner cell of EBs while maintaining cellular activities is reported. We coated the iPSC surface with nanoscale extracellular matrix fabricated by self-assembly between vitronectin and heparin. This nano-coating allowed iPSC to retain its in vitro properties including adhesion capability, proliferation, and pluripotency during its aggregation. More importantly, the nano-coating did not induce lineage-specific differentiation but increased E-cadherin expression, resulting in promotion of development of EB. This study provides a foundation for future production of sophisticated patient-specific multicellular aggregates by modification of living cell membranes. VTN/HEP nano-coating acts as a flexible individual cellular environment VTN/HEP nano-coating stimulates embryoid body to promote its development VTN/HEP nano-coating preserves spontaneous cell aggregation
Collapse
Affiliation(s)
- Uiyoung Han
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyeonjin Cha
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Hu H, Yang C, Li M, Shao D, Mao HQ, Leong KW. Flash Technology-Based Self-Assembly in Nanoformulation: From Fabrication to Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 42:99-116. [PMID: 34421329 PMCID: PMC8375602 DOI: 10.1016/j.mattod.2020.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.
Collapse
Affiliation(s)
- Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Chao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Choi Y, Phan B, Tanaka M, Hong J, Choi J. Methods and Applications of Biomolecular Surface Coatings on Individual Cells. ACS APPLIED BIO MATERIALS 2020; 3:6556-6570. [DOI: 10.1021/acsabm.0c00867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Binh Phan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Han U, Hwang JH, Lee JM, Kim H, Jung HS, Hong JH, Hong J. Transmission and regulation of biochemical stimulus via a nanoshell directly adsorbed on the cell membrane to enhance chondrogenic differentiation of mesenchymal stem cell. Biotechnol Bioeng 2019; 117:184-193. [PMID: 31560128 DOI: 10.1002/bit.27183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
A nanoscale artificial extracellular matrix (nanoshell) formed by layer-by-layer adsorption can enhance and modulate the function of stem cells by transferring biochemical stimulus to the cell directly. Here, the nanoshell composed of fibronectin (FN) and chondroitin sulfate (CS) is demonstrated to promote chondrogenic differentiation of mesenchymal stem cells (MSCs). The multilayer structure of nanoshell is formed by repeating self-assembly of FN and CS, and its thickness can be controlled through the number of layers. The expression of chondrogenic markers in MSCs coated with the FN/CS nanoshell was increased as the number of bilayers in the nanoshell increased until four, but when it exceeds five bilayers, the effect began to decrease. Finally, the MSCs coated with optimized four bilayers of FN/CS nanoshell have high chondrogenic differentiation efficiency and showed the potential to increase formation of cartilage tissue when it is transplanted into mouse kidney. So, the precise regulation of stem cell fate at single cell level can be possible through the cellular surface modification by self-assembled polymeric film.
Collapse
Affiliation(s)
- Uiyoung Han
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jun-Ha Hwang
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jong-Min Lee
- Department of Oral Biology, Division in Anatomy and Developmental Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyeoni Kim
- Department of Oral Biology, Division in Anatomy and Developmental Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Han-Sung Jung
- Department of Oral Biology, Division in Anatomy and Developmental Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Ho Hong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|