1
|
Wu X, Xie Y, Deng R, Wang Z, Yang H, Chen J, Hu YW. Tunable-pH Environment Induced by Local Anchor Effect of High Lewis Basicity Conductive Polymers toward Glycerol Upgrading Assisted Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5905-5914. [PMID: 38275284 DOI: 10.1021/acsami.3c17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hybrid organic/inorganic composites with the organic phase tailored to modulate the local chemical environment at the transition metal-based catalyst surface arise as an enchanting category of catalysts for electrocatalysis. A fundamental understanding of how the conductive polymers of different Lewis basicities affect the reaction path is, however, still lacking to guide rational catalyst design. Herein, polyaniline (PANI), poly(3,4-ethylenedioxythiophene) (PEDOT), and poly(vinyl alcohol) (PVA) manifesting different Lewis basicities are compared for their regulatory roles on the hydrogen evolution reaction (HER) and glycerol electrooxidation (GOR) pathways regarding local proton coverage. Concerted efforts from in situ Raman and DFT theoretical calculations unveil that conductive polymer/V2O5 surface with tunable local pH regulated by Lewis acidity/basicity. As a result of the tailored chemical environment, the restructured V2O5/PANI/NF composite demonstrates a low overall potential of 1.55 V at the partial current density of 50 mA cm-2 for formate. The glycerol upgrading assisted hydrogen evolution device composed of V2O5/PANI/NF exhibits excellent electrochemical performance at a maximal Faraday efficiency of 82%, ranking among state of the art.
Collapse
Affiliation(s)
- Xiao Wu
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yulu Xie
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Renchao Deng
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Zehua Wang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Hao Yang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jian Chen
- Instrumental Analysis and Research Centre, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Wen Hu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Rajpure MM, Jadhav HS, Kim H. Layer interfacing strategy to derive free standing CoFe@PANI bifunctional electrocatalyst towards oxygen evolution reaction and methanol oxidation reaction. J Colloid Interface Sci 2024; 653:949-959. [PMID: 37776722 DOI: 10.1016/j.jcis.2023.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Developing inexpensive, highly electrochemically active, and stable catalysts towards electrochemical studies remains challenge for researchers. In this regard, binder-free CoFe@PANI composite electrocatalyst is deposited on nickel foam (NF) substrate via successive electrodeposition of polyaniline (PANI) and CoFe-LDH at Room temperature (RT). As deposited binder-free CoFe@PANI electrocatalyst displays high electrocatalytic activity towards oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline media. In CoFe@PANI structure, interfacing of high-electron conducting PANI establishes strong interconnection with CoFe-LDH by tuning electronic structures, which accelerates the electrochemical performance towards OER and MOR. For OER, CoFe@PANI requires low overpotential (η10) of 237 mV to reach current density (Id) of 10 mA cm-2 and displays low Tafel slope value of 46 mV dec-1 in 1 M KOH solution. Also, it displayed specific Id of 120 mA cm-2, when it was tested for MOR in 1 M KOH with 0.5 M methanol solution. The superior electrocatalytic activity of CoFe@PANI is mainly ascribed to high electrochemical active surface area (ECSA), abundant active sites and fast electron transfer between electrocatalyst and electrode surface. Of note, the current work may open new era for design and development of non-precious highly active and stable hybrid electrocatalysts at RT for various applications.
Collapse
Affiliation(s)
- Manoj M Rajpure
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Harsharaj S Jadhav
- Centre for Materials for Electronics Technology (C-MET), Pune 411 008, India.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
3
|
Kong Q, Qi M, Li W, Shi Y, Su J, Xiao S, Sun J, Bai X, Dong B, Wang L. A Novel Z-Scheme Heterostructured Bi 2 S 3 /Cu-TCPP Nanocomposite with Synergistically Enhanced Therapeutics against Bacterial Biofilm Infections in Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302547. [PMID: 37376834 DOI: 10.1002/smll.202302547] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Porphyrin-based antibacterial photodynamic therapy (aPDT) has found widespread applications in treating periodontitis. However, its clinical use is limited by poor energy absorption, resulting in limited reactive oxygen species (ROS) generation. To overcome this challenge, a novel Z-scheme heterostructured nanocomposite of Bi2 S3 /Cu-TCPP is developed. This nanocomposite exhibits highly efficient light absorption and effective electron-hole separation, thanks to the presence of heterostructures. The enhanced photocatalytic properties of the nanocomposite facilitate effective biofilm removal. Theoretical calculations confirm that the interface of the Bi2 S3 /Cu-TCPP nanocomposite readily adsorbs oxygen molecules and hydroxyl radicals, thereby improving ROS production rates. Additionally, the photothermal treatment (PTT) using Bi2 S3 nanoparticles promotes the release of Cu2+ ions, enhancing the chemodynamic therapy (CDT) effect and facilitating the eradication of dense biofilms. Furthermore, the released Cu2+ ions deplete glutathione in bacterial cells, weakening their antioxidant defense mechanisms. The synergistic effect of aPDT/PTT/CDT demonstrates potent antibacterial activity against periodontal pathogens, particularly in animal models of periodontitis, resulting in significant therapeutic effects, including inflammation alleviation and bone preservation. Therefore, this design of semiconductor-sensitized energy transfer represents an important advancement in improving aPDT efficacy and the treatment of periodontal inflammation.
Collapse
Affiliation(s)
- Qingchao Kong
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Wen Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jing Su
- Department of Cell Biology, Norman Bethune College of Medicine Jilin University, Changchun, 130021, P. R. China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine Jilin University, Changchun, 130021, P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
4
|
Chen J, Luo X, Zhang H, Liang X, Xiao K, Ouyang T, Dan M, Liu ZQ. Constructing superhydrophilic CoRu-LDH/PANI nanowires with optimized electronic structure for hydrogen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Sulfurized NiFe bimetallic electrocatalysts derived from Prussian blue analogues for oxygen evolution reactions. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Khoshsang H, Ghaffarinejad A. Electrochemical synthesis of polyaniline silver-palladium composite coated nickel foam as an electrocatalyst for the hydrogen evolution reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Duan Y, Huang Z, Ren J, Dong X, Wu Q, Jia R, Xu X, Shi S, Han S. Highly efficient OER catalyst enabled by in situ generated manganese spinel on polyaniline with strong coordination. Dalton Trans 2022; 51:9116-9126. [PMID: 35666657 DOI: 10.1039/d2dt01236g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oxygen evolution reaction (OER), as the rate-determining step of electrochemical water splitting, is extremely crucial, and thus it is a requisite to engineer feasible and effective electrocatalysts to shrink the reaction energy barrier and accelerate the reaction. Herein, monodisperse Mn3O4 nanoparticles on a PANI substrate were synthesized by polymerization and in situ oxidation. Combining Mn3O4 nanoparticles and PANI fibers can not only maximize the strong coupling effect and synergistic effect but also construct a well-defined three-dimensional structure with extensive exposed active sites, where the permeation and adherence of the electrolyte are made exceedingly feasible, thus displaying excellent OER activity. Benefiting from the outstanding structural stability, the resulting Mn3O4/PANI/NF is able to deliver a low overpotential of 262 mV at a current density of 10 mA cm-2, which outperforms the commercial RuO2 catalyst (275 mV) as well as presently reported representative Mn-based and PANI-based electrocatalysts and state-of-the-art OER electrocatalysts. The synthetic method for Mn3O4/PANI not only provides a brand-new avenue for the rational design of inorganic material/conductive polymer composites but also broadens the understanding of the mechanism of Mn-based catalysts for highly enhanced OER.
Collapse
Affiliation(s)
- Yanjie Duan
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Zhixiong Huang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jingyu Ren
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Xiangbin Dong
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Qingsheng Wu
- School of chemical science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Runping Jia
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Xiaowei Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Shaojun Shi
- Jiangsu Lab of Advanced Functional Material, Changshu Institute of Technology, Changshu 215500, P. R. China.
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| |
Collapse
|
8
|
Habibi M, Habibi-Yangjeh A, Pouran SR, Chand H, Krishnan V, Xu X, Wang C. Visible-light-triggered persulfate activation by CuCo2S4 modified ZnO photocatalyst for degradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
PANI coated NiMoOP nanoarrays as efficient electrocatalyst for oxygen evolution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Li H, Yang S, Wei W, Zhang M, Jiang Z, Yan Z, Xie J. Chrysanthemum-like FeS/Ni 3S 2 heterostructure nanoarray as a robust bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2022; 608:536-548. [PMID: 34626995 DOI: 10.1016/j.jcis.2021.09.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
The development of a scalable strategy to prepare highly efficient and stable bifunctional electrocatalysts is the key to industrial electrocatalytic water splitting cycles to produce clean hydrogen. Here, a simple and quick one-step hydrothermal method was used to successfully fabricate a three-dimensional core chrysanthemum-like FeS/Ni3S2 heterogeneous nanoarray (FeS/Ni3S2@NF) on a porous nickel foam skeleton. Compared with the monomer Ni3S2@NF, the chrysanthemum-like FeS/ Ni3S2@NF heterostructure nanomaterials have improved catalytic performance in alkaline media, showing low overpotentials of 192 mV (η10) and 130 mV (η-10) for OER and HER, respectively. This study attests that integrated interface engineering and precise morphology control are effective strategies for activating the Ni3+/Ni2+ coupling, promoting charge transfer and improving the intrinsic activity of the material to accelerate the OER reaction kinetics and promote the overall water splitting performance. The scheme can be reasonably applied to the design and development of transition metal sulfide-based electrocatalysts to put into industrial practice of electrochemical water oxidation.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 159 Longpan Road, 210037 Nanjing, PR China
| | - Wei Wei
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China.
| | - Mingmei Zhang
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Zhifeng Jiang
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Zaoxue Yan
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Jimin Xie
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
11
|
3D Ta3N5 thin film confined-growth Co nanoparticles for efficient bifunction electrolyzed water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
13
|
Wang J, Quan Y, Wang G, Wang D, Xiao J, Gao S, Xu H, Liu S, Cui L. 3D hollow cage copper cobalt sulfide derived from metal–organic frameworks for high-performance asymmetric supercapacitors. CrystEngComm 2021. [DOI: 10.1039/d1ce00884f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fabrication of the advanced MOF-based 3D hollow cage ternary bimetallic material CuCo2S4 for high performance asymmetric supercapacitors.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yiling Quan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guoxiang Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dazhi Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jie Xiao
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shiping Gao
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hongfeng Xu
- Liaoning Provincial Key Laboratory of New Energy Battery, Dalian Jiaotong University, Dalian 116028, PR China
| | - Sa Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Li Cui
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
14
|
Wang S, Xue W, Fang Y, Li Y, Yan L, Wang W, Zhao R. Bismuth activated succulent-like binary metal sulfide heterostructure as a binder-free electrocatalyst for enhanced oxygen evolution reaction. J Colloid Interface Sci 2020; 573:150-157. [DOI: 10.1016/j.jcis.2020.03.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/29/2022]
|