1
|
Riesner M, Shabani F, Zeylmans van Emmichoven L, Klein J, Delikanli S, Fainblat R, Demir HV, Bacher G. Demystifying Trion Emission in CdSe Nanoplatelets. ACS NANO 2024; 18:24523-24531. [PMID: 39159423 DOI: 10.1021/acsnano.4c08776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.
Collapse
Affiliation(s)
- Maurizio Riesner
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | | | - Julian Klein
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Rachel Fainblat
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Gerd Bacher
- Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
2
|
Diroll BT, Dabard C, Hua M, Climente JI, Lhuillier E, Ithurria S. Hole Relaxation Bottlenecks in CdSe/CdTe/CdSe Lateral Heterostructures Lead to Bicolor Emission. NANO LETTERS 2024; 24:7934-7940. [PMID: 38885197 DOI: 10.1021/acs.nanolett.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Concentric lateral CdSe/CdTe/CdSe heterostructures show bicolor photoluminescence from both a red charge transfer band of the CdSe/CdTe interface and a green fluorescence from CdSe. This work uses visible and near-infrared transient spectroscopy measurements to demonstrate that the deviation from Kasha's rule arises from a hole relaxation bottleneck from CdSe to CdTe. Hole transfer can take up to 1 ns, which permits radiative relaxation of excitons remaining in CdSe. Simulations indicate that the hole relaxation bottleneck arises due to the sparse density of states and poor spatial overlap of hole states at energies near the CdSe band edge. The divergent kinetics of transfer for band edge and hot holes is exploited to vary the ratio of green and red photoluminescence with excitation wavelength, providing another knob to control emission color. These findings support the use of lateral heterojunctions as a method for slowing carrier relaxation in two-dimensional materials.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory. 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin, Paris 75005, France
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory. 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I, Castelló de la Plana 12080, Spain
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 Place Jussieu, Paris 75005, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin, Paris 75005, France
| |
Collapse
|
3
|
Baghdasaryan DA, Harutyunyan VA, Kazaryan EM, Sarkisyan HA, Petrosyan LS, Shahbazyan TV. Possibility of Exciton Bose-Einstein Condensation in CdSe Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2734. [PMID: 37836375 PMCID: PMC10574473 DOI: 10.3390/nano13192734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose-Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an "energy gap" between the ground and the first excited states of the two-dimensional exciton center of inertia of the translational motion. The condensation temperature (Tc) increases with the width of the "gap" between the ground and the first excited levels of size quantization. It is shown that when the screening effect of free electrons and holes on bound excitons is considered, the BEC temperature of the exciton subsystem increases as compared to the case where this effect is absent. The energy spectrum of the exciton condensate in a CdSe nanoplate is calculated within the framework of the weakly nonideal Bose gas approximation, considering the specifics of two-dimensional Born scattering.
Collapse
Affiliation(s)
- Davit A. Baghdasaryan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia; (D.A.B.); (V.A.H.); (E.M.K.)
| | - Volodya A. Harutyunyan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia; (D.A.B.); (V.A.H.); (E.M.K.)
| | - Eduard M. Kazaryan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia; (D.A.B.); (V.A.H.); (E.M.K.)
| | - Hayk A. Sarkisyan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia; (D.A.B.); (V.A.H.); (E.M.K.)
- Institute of Electronics and Telecommunications, Peter the Great Saint-Petersburg Polytechnical University, 195251 Saint-Petersburg, Russia
| | - Lyudvig S. Petrosyan
- Department of Physics, Jackson State University, Jackson, MS 39217, USA; (L.S.P.); (T.V.S.)
| | - Tigran V. Shahbazyan
- Department of Physics, Jackson State University, Jackson, MS 39217, USA; (L.S.P.); (T.V.S.)
| |
Collapse
|
4
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
5
|
VanOrman ZA, Weiss R, Bieber AS, Chen B, Nienhaus L. Mechanistic insight into CdSe nanoplatelet-sensitized upconversion: size and stacking induced effects. Chem Commun (Camb) 2023; 59:322-325. [PMID: 36511180 DOI: 10.1039/d2cc04694f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CdSe nanoplatelets (NPLs) have been reported as triplet sensitizers for photon upconversion (UC). However, their UC quantum yields lag behind more conventional systems. Here, we take advantage of their one-dimensional quantum confinement to decouple effects caused by the energetic driving force and lateral size. A surprising anti-correlation between the power threshold Ith and the UC quantum yield based on the NPL size is found. We attribute this result to two distinct triplet-triplet annihilation mechanisms based on the NPL lateral dimension and degree of NPL stacking-mediated either by molecular diffusion or triplet energy diffusion.
Collapse
Affiliation(s)
- Zachary A VanOrman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Rachel Weiss
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Alexander S Bieber
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Banghao Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Lea Nienhaus
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
6
|
Baghdasaryan DA, Harutyunyan VA, Hayrapetyan DB, Kazaryan EM, Baskoutas S, Sarkisyan HA. Exciton States and Optical Absorption in CdSe and PbS Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203690. [PMID: 36296880 PMCID: PMC9611409 DOI: 10.3390/nano12203690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/12/2023]
Abstract
The exciton states and their influence on the optical absorption spectrum of CdSe and PbS nanoplatelets (NPLs) are considered theoretically in this paper. The problem is discussed in cases of strong, intermediate, and weak size quantization regimes of charge carrier motion in NPLs. For each size quantization regime, the corresponding potential that adequately describes the electron-hole interaction in this mode of space quantization of charge carriers is chosen. The single-particle energy spectra and corresponding wave functions for strong intermediate and weak size quantization regimes have been revealed. The dependence of material parameters on the number of monolayers in the sample has been considered. The related selection rules and the dependence of the absorption coefficient on the frequency and polarization direction of the incident light wave were obtained. The interband transition threshold energy dependencies were obtained for each size quantization regime. The effect of dielectric coefficient mismatch and different models of electron-hole interaction potentials have been studied in CdSe and PbS NPLs. It is also shown that with an increase in the linear dimensions of the structure, the threshold frequency of absorption decreases. The binding energies and absorption coefficient results for NPL with different thicknesses agree with the experimental data. The values of the absorption exciton peaks measured experimentally are close to our calculated values for CdSe and PbS samples.
Collapse
Affiliation(s)
- Davit A. Baghdasaryan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia
| | - Volodya A. Harutyunyan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia
| | - David B. Hayrapetyan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia
| | - Eduard M. Kazaryan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26504 Patras, Greece
| | - Hayk A. Sarkisyan
- Institute of Engineering and Physics, Russian-Armenian University, H. Emin 123, Yerevan 0051, Armenia
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
7
|
Humayun MH, Hernandez-Martinez PL, Gheshlaghi N, Erdem O, Altintas Y, Shabani F, Demir HV. Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103524. [PMID: 34510722 DOI: 10.1002/smll.202103524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2 O3 ) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d-1 with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.
Collapse
Affiliation(s)
- Muhammad Hamza Humayun
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez-Martinez
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Ben Amara I, Boustanji H, Jaziri S. Tuning optoelectronic response of lateral core-alloyed crown nanoplatelets: type-II CdSe-CdSe 1-xTe x. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:465301. [PMID: 34412039 DOI: 10.1088/1361-648x/ac1f4e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
We present a theoretical study showing that the exciton emission in the CdSe-CdSe1-xTexcore-alloyed crown heterostructure results from the tunable quasi-type II to pure type II behavior by adjusting the Te to Se ratio. We suggest that the direct crown exciton or interface indirect exciton or a dual emission can be tuned due to the altered conduction band offset. We also found that these different emissions are red-shifted with increasing the nanoplatelets (NPLs) monolayer (ML) thickness due to the quantum confinement effect. The double exciton emission develops caused by the band bowing effect occurring in the alloyed crown. The band bowing is originated from the difference between the bonding nature of the Se and Te orbitals with the Cd orbitals in the conduction band edge states. We also found that the band bowing is sensitive on the alloyed-crown ML thickness and the in-plane strain due to hybridization magnitude between the cation (Cd) and anion (Se, Te). Our results are in accord with the available experimental data. We propose the CdSe-CdSe1-xTexcore-alloyed crown NPLs as a promising contender for the near-infrared-emitting heterostructures preparation used for light-harvesting applications.
Collapse
Affiliation(s)
- Imen Ben Amara
- Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia
| | - Hela Boustanji
- Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia
| | - Sihem Jaziri
- Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia
- Faculté des Sciences de Bizerte, Laboratoire de Physique des Matériaux: Structure et Propriétés, Université de Carthage, 7021 Jarzouna, Tunisia
| |
Collapse
|
9
|
Ayari S, Quick MT, Owschimikow N, Christodoulou S, Bertrand GHV, Artemyev M, Moreels I, Woggon U, Jaziri S, Achtstein AW. Correction: Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. NANOSCALE 2021; 13:6266-6267. [PMID: 33734269 DOI: 10.1039/d1nr90043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Correction for 'Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties' by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448-14458, DOI: .
Collapse
Affiliation(s)
- Sabrine Ayari
- Laboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna 7021, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Weiss EA. Influence of Shape Anisotropy on the Emission of Low-Dimensional Semiconductors. ACS NANO 2021; 15:3568-3577. [PMID: 33691063 DOI: 10.1021/acsnano.1c01337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of precise and scalable synthetic methods for producing anisotropic semiconductor nanostructures provides opportunities to tune the photophysical properties of these particles beyond their band gaps, and to incorporate them into higher-order structures with macroscopic anisotropic responses to electric and optical fields. This perspective article discusses some of these opportunities in the context of colloidal semiconductor nanoplatelets, with a focus on the influence of confinement anisotropy on processes that dictate the emission.
Collapse
Affiliation(s)
- Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Achtstein AW, Ayari S, Helmrich S, Quick MT, Owschimikow N, Jaziri S, Woggon U. Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size. NANOSCALE 2020; 12:23521-23531. [PMID: 33225335 DOI: 10.1039/d0nr04745g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets. Subsequently the exciton diffusion and mobility become tunable since these phonon scattering processes determine and limit the mobility. At 4 K the exciton mobility increases from ∼ 4 × 103 cm2 V-1 s-1 to more than 1.4 × 104 cm2 V-1 s-1 for large platelets, while there are weaker changes with size and the mobility is around 8 × 101 cm2 V-1 s-1 for large platelets at room temperature. In turn at 4 K the exciton diffusion coefficient increases with the lateral size from ∼ 1.3 cm2 s-1 to ∼ 5 cm2 s-1, while it is around half the value for large platelets at room temperature. Our experimental results are in good agreement with theoretical modeling, showing a lateral size and aspect ratio dependence. The findings open up the possibility for materials with tunable exciton mobility, diffusion or emission line width, but quasi constant transition energy. High exciton mobility is desirable e.g. for solar cells and allows efficient excitation harvesting and extraction.
Collapse
Affiliation(s)
- Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Diroll BT, Schaller RD. Intersubband Relaxation in CdSe Colloidal Quantum Wells. ACS NANO 2020; 14:12082-12090. [PMID: 32864955 DOI: 10.1021/acsnano.0c05459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics of intersubband relaxation are critical to quantum well technologies such as quantum cascade lasers and quantum well infrared photodetectors. Here, intersubband relaxation in CdSe colloidal quantum wells, or nanoplatelets, is studied via pump-push-probe transient spectroscopy. An initial interband pump pulse is followed by a secondary infrared push excitation, resonant with intersubband absorption, which promotes electrons from the first conduction band of the quantum well to the second conduction band. A probe pulse monitors subsequent electron cooling to the band edge of the quantum well. Using this technique, intersubband relaxation is studied as a function of critical variables such as colloidal quantum well size and thickness, surface ligand chemistry, temperature, and excitation pulse intensity. Larger quantum well sizes, judicious selection of surface ligand chemistry (e.g., thiolates), low temperatures, and elevated push pulse fluences slow intersubband relaxation. However, compared to resonant intraband relaxation in colloidal quantum dots (up to hundreds of picoseconds), intersubband relaxation in colloidal quantum wells is rapid (<1 ps) under all examined conditions. These experiments indicate that rapid relaxation is driven by both LO phonon and surface scattering. The short time scale of relaxation observed in these materials may hinder intersubband technologies such as mid-infrared detectors, although such rapid relaxation may prove valuable in optical switching.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Antolinez FV, Rabouw FT, Rossinelli AA, Keitel RC, Cocina A, Becker MA, Norris DJ. Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets. NANO LETTERS 2020; 20:5814-5820. [PMID: 32589429 DOI: 10.1021/acs.nanolett.0c01707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal nanoplatelets (NPLs) are atomically flat, quasi-two-dimensional particles of a semiconductor. Despite intense interest in their optical properties, several observations concerning the emission of CdSe NPLs remain puzzling. While their ensemble photoluminescence spectrum consists of a single narrow peak at room temperature, two distinct emission features appear at temperatures below ∼160 K. Several competing explanations for the origin of this two-color emission have been proposed. Here, we present temperature- and time-dependent experiments demonstrating that the two emission colors are due to two subpopulations of uncharged and charged NPLs. We study dilute films of isolated NPLs, thus excluding any explanation relying on collective effects due to NPL stacking. Temperature-dependent measurements explain that trion emission from charged NPLs is bright at cryogenic temperatures, while temperature activation of nonradiative Auger recombination quenches the trion emission above 160 K. Our findings clarify many of the questions surrounding the photoluminescence of CdSe NPLs.
Collapse
Affiliation(s)
- Felipe V Antolinez
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Freddy T Rabouw
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Aurelio A Rossinelli
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Robert C Keitel
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ario Cocina
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael A Becker
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- IBM Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Ayari S, Quick MT, Owschimikow N, Christodoulou S, Bertrand GHV, Artemyev M, Moreels I, Woggon U, Jaziri S, Achtstein AW. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. NANOSCALE 2020; 12:14448-14458. [PMID: 32618327 DOI: 10.1039/d0nr03170d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.
Collapse
Affiliation(s)
- Sabrine Ayari
- Laboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna 7021, Tunisia
| | - Michael T Quick
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Nina Owschimikow
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | - Mikhail Artemyev
- Research Institute for Physical Chemical Problems of Belarusian State University, 220006 Minsk, Belarus
| | - Iwan Moreels
- Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
| | - Ulrike Woggon
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Sihem Jaziri
- Laboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna 7021, Tunisia and Laboratoire de Physique de la Matiere Condensee, Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia
| | - Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
15
|
Quick MT, Owschimikow N, Khan AH, Polovitsyn A, Moreels I, Woggon U, Achtstein AW. Two-photon based pulse autocorrelation with CdSe nanoplatelets. NANOSCALE 2019; 11:17293-17300. [PMID: 31512703 DOI: 10.1039/c9nr06156h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate broadband two-photon absorption autocorrelators based on II-VI semiconductor nanoplatelets as an alternative to common second harmonic generation based techniques. As compared to bulk materials the exceptionally high enhancement of two-photon absorption in these 2D structures results in very efficient two-photon absorption based autocorrelation detected via PL emission. We compare the results with TPA autocorrelation in CdS bulk as well as SHG based autocorrelation in β-barium borate. We show that CdSe nanoplatelet based autocorrelation can exceed the efficiency of conventional methods by two orders in magnitude, especially for short interaction length, and allows a precise pulse-width determination. We demonstrate that very high two-photon absorption cross sections of the nanoplatelets are the basis for this effective TPA autocorrelation. Based on our results with II-VI nanoplatelets efficient broadband autocorrelation with more than ∼100 nm bandwidth and very high sensitivity seems feasible.
Collapse
Affiliation(s)
- Michael T Quick
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Nina Owschimikow
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Ali Hossain Khan
- Instituto Italiano di Tecnologia, via morego 30, 16163 Genova, Italy and Department of Chemistry, Ghent University, krijgslaan 281-S3, 9000 Gent, Belgium
| | - Anatolii Polovitsyn
- Instituto Italiano di Tecnologia, via morego 30, 16163 Genova, Italy and Department of Chemistry, Ghent University, krijgslaan 281-S3, 9000 Gent, Belgium
| | - Iwan Moreels
- Instituto Italiano di Tecnologia, via morego 30, 16163 Genova, Italy and Department of Chemistry, Ghent University, krijgslaan 281-S3, 9000 Gent, Belgium
| | - Ulrike Woggon
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|