1
|
Diroll BT, Schaller RD. Experimental Measurement of Particle-to-Particle Heat Transfer in Nanoparticle Solids. ACS NANO 2025; 19:15698-15706. [PMID: 40232830 DOI: 10.1021/acsnano.4c18541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Thermal conductivity in nanoparticle solids has been previously reported in the range of 0.1-1 W m-1 K-1, which is a much smaller variation than the orders of magnitude differences achievable in electrical conductivity of similar systems. Both the low absolute magnitude of thermal conductivity and the relative insensitivity compared to electrical conductivity may be largely attributed to the poor interfacial thermal conductance of the many interfaces of the nanocrystal solid, but a direct experimental study of these interfaces is challenging. Here, we overcome this challenge via direct spectroscopic observation of heat flow within the components of a nanocrystal solid. These thermal transfers are studied by mixing two distinct types of particles: one that serves as a selectively excited antenna to inject heat and the other as the thermal acceptor to report the time-dependent change in temperature. Using transient spectroscopy, the equilibration between the heat donor and heat acceptor is observed to require ∼300 ps at room temperature, speeds up at reduced temperature, and has only weak sensitivity to the relative stoichiometry of the components or the intervening ligands. These results contrast strongly with the 10-20 ps time-scale of through-bond heat transfer at the ligand-particle surface and highlight the substantially lower interfacial thermal conductance of particle-to-particle transport without covalent bonding. It is also found, serendipitously, that the mixed composite films show an unexpected, substantially enhanced nonlinear absorption at the resonant wavelength of the plasmonic particles, which is tentatively attributed to a local field enhancement.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Kolkowski R, Berkhout A, Roscam Abbing SDC, Pal D, Dieleman CD, Geuchies JJ, Houtepen AJ, Ehrler B, Koenderink AF. Temporal Dynamics of Collective Resonances in Periodic Metasurfaces. ACS PHOTONICS 2024; 11:2480-2496. [PMID: 38911846 PMCID: PMC11191746 DOI: 10.1021/acsphotonics.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
Temporal dynamics of confined optical fields can provide valuable insights into light-matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide. To probe the resonant near-field enhancement, our IAC measurements make use of enhanced two-photon excited luminescence (TPEL) from semiconductor quantum dots deposited on the nanoparticle arrays. Thanks to the incoherent character of TPEL, the measurements are only sensitive to the fundamental optical fields and therefore can reveal clear signatures of their coherent temporal dynamics. In particular, we show that the excitation of a high-Q collective resonance gives rise to interference fringes at time delays as large as 500 fs, much greater than the incident pulse duration (150 fs). Based on these signatures, the basic characteristics of the resonances can be determined, including their Q factors, which are found to exceed 200. Furthermore, the measurements also reveal temporal beating between two different resonances, providing information on their frequencies and their relative contribution to the field enhancement. Finally, we present an approach to enhance the visibility of the resonances hidden in the IAC curves by converting them into spectrograms, which greatly facilitates the analysis and interpretation of the results. Our findings open up new perspectives on time-resolved studies of collective resonances in metasurfaces and other multiresonant systems.
Collapse
Affiliation(s)
- Radoslaw Kolkowski
- Department
of Applied Physics, Aalto University, P.O. Box 13500, Aalto FI-00076, Finland
- Department
of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Annemarie Berkhout
- Department
of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Sylvianne D. C. Roscam Abbing
- Department
of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Advanced
Research Center for Nanolithography (ARCNL), Science Park 106, Amsterdam 1098 XG, The Netherlands
| | - Debapriya Pal
- Department
of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Christian D. Dieleman
- Advanced
Research Center for Nanolithography (ARCNL), Science Park 106, Amsterdam 1098 XG, The Netherlands
- Department
of Sustainable Energy Materials and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Bruno Ehrler
- Department
of Sustainable Energy Materials and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - A. Femius Koenderink
- Department
of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Institute
of Physics, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
3
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
4
|
Ben Amara I, Boustanji H, Jaziri S. Tuning optoelectronic response of lateral core-alloyed crown nanoplatelets: type-II CdSe-CdSe 1-xTe x. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:465301. [PMID: 34412039 DOI: 10.1088/1361-648x/ac1f4e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
We present a theoretical study showing that the exciton emission in the CdSe-CdSe1-xTexcore-alloyed crown heterostructure results from the tunable quasi-type II to pure type II behavior by adjusting the Te to Se ratio. We suggest that the direct crown exciton or interface indirect exciton or a dual emission can be tuned due to the altered conduction band offset. We also found that these different emissions are red-shifted with increasing the nanoplatelets (NPLs) monolayer (ML) thickness due to the quantum confinement effect. The double exciton emission develops caused by the band bowing effect occurring in the alloyed crown. The band bowing is originated from the difference between the bonding nature of the Se and Te orbitals with the Cd orbitals in the conduction band edge states. We also found that the band bowing is sensitive on the alloyed-crown ML thickness and the in-plane strain due to hybridization magnitude between the cation (Cd) and anion (Se, Te). Our results are in accord with the available experimental data. We propose the CdSe-CdSe1-xTexcore-alloyed crown NPLs as a promising contender for the near-infrared-emitting heterostructures preparation used for light-harvesting applications.
Collapse
Affiliation(s)
- Imen Ben Amara
- Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia
| | - Hela Boustanji
- Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia
| | - Sihem Jaziri
- Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia
- Faculté des Sciences de Bizerte, Laboratoire de Physique des Matériaux: Structure et Propriétés, Université de Carthage, 7021 Jarzouna, Tunisia
| |
Collapse
|
5
|
Shukla S, Pandey PC, Narayan RJ. Tunable Quantum Photoinitiators for Radical Photopolymerization. Polymers (Basel) 2021; 13:2694. [PMID: 34451234 PMCID: PMC8398557 DOI: 10.3390/polym13162694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
This review describes the use of nanocrystal-based photocatalysts as quantum photoinitiators, including semiconductor nanocrystals (e.g., metal oxides, metal sulfides, quantum dots), carbon dots, graphene-based nanohybrids, plasmonic nanocomposites with organic photoinitiators, and tunable upconverting nanocomposites. The optoelectronic properties, cross-linking behavior, and mechanism of action of quantum photoinitiators are considered. The challenges and prospects associated with the use of quantum photoinitiators for processes such as radical polymerization, reversible deactivation radical polymerization, and photoinduced atom transfer radical polymerization are reviewed. Due to their unique capabilities, we forsee a growing role for quantum photoinitiators over the coming years.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina, Raleigh, NC 27599, USA;
| | - Prem C. Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, India;
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Raleigh, NC 27599, USA;
| |
Collapse
|
6
|
Achtstein AW, Ayari S, Helmrich S, Quick MT, Owschimikow N, Jaziri S, Woggon U. Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size. NANOSCALE 2020; 12:23521-23531. [PMID: 33225335 DOI: 10.1039/d0nr04745g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets. Subsequently the exciton diffusion and mobility become tunable since these phonon scattering processes determine and limit the mobility. At 4 K the exciton mobility increases from ∼ 4 × 103 cm2 V-1 s-1 to more than 1.4 × 104 cm2 V-1 s-1 for large platelets, while there are weaker changes with size and the mobility is around 8 × 101 cm2 V-1 s-1 for large platelets at room temperature. In turn at 4 K the exciton diffusion coefficient increases with the lateral size from ∼ 1.3 cm2 s-1 to ∼ 5 cm2 s-1, while it is around half the value for large platelets at room temperature. Our experimental results are in good agreement with theoretical modeling, showing a lateral size and aspect ratio dependence. The findings open up the possibility for materials with tunable exciton mobility, diffusion or emission line width, but quasi constant transition energy. High exciton mobility is desirable e.g. for solar cells and allows efficient excitation harvesting and extraction.
Collapse
Affiliation(s)
- Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ayari S, Quick MT, Owschimikow N, Christodoulou S, Bertrand GHV, Artemyev M, Moreels I, Woggon U, Jaziri S, Achtstein AW. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. NANOSCALE 2020; 12:14448-14458. [PMID: 32618327 DOI: 10.1039/d0nr03170d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.
Collapse
Affiliation(s)
- Sabrine Ayari
- Laboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna 7021, Tunisia
| | - Michael T Quick
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Nina Owschimikow
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | - Mikhail Artemyev
- Research Institute for Physical Chemical Problems of Belarusian State University, 220006 Minsk, Belarus
| | - Iwan Moreels
- Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
| | - Ulrike Woggon
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Sihem Jaziri
- Laboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna 7021, Tunisia and Laboratoire de Physique de la Matiere Condensee, Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia
| | - Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|