1
|
Jiang R, Wang X, Zhi Q, Liu Z, Yang X, Li C, Xu Q, Zhan X, Wang K, Zhang L, Jiang J, Feng Y. Conjugated Phthalocyanine-Based Mesoporous Covalent Organic Frameworks for Efficient Anodic Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410405. [PMID: 39711291 DOI: 10.1002/smll.202410405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Indexed: 12/24/2024]
Abstract
Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF16) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.6-2.4 nm, enabling facile ion transportation. Immersion experiments demonstrate the excellent stability of both COFs. I-V curve measurement discloses the superb conductivity of both COFs due to their fully π-conjugated frameworks. These merits, in combination with their N-rich skeleton, endow the two COFs with excellent anodic Li+ storage performance in terms of high specific capacities, superb rate performance, and good cycling stability. In particular, CoPc-3Ph-COF suggests a large reversible capacity of 1086 mA h g-1 at 100 mA g-1, superior to most reported organic LIBs anodes, exhibiting its promising application in high-performance LIBs.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qianjun Zhi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhixin Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiya Yang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chunli Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qianqian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoning Zhan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Zhao J, Zhou M, Chen J, Wang L, Zhang Q, Zhong S, Xie H, Li Y. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303353. [PMID: 37391276 DOI: 10.1002/smll.202303353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Indexed: 07/02/2023]
Abstract
This work reports a covalent organic framework composite structure (PMDA-NiPc-G), incorporating multiple-active carbonyls and graphene on the basis of the combination of phthalocyanine (NiPc(NH2 )4 ) containing a large π-conjugated system and pyromellitic dianhydride (PMDA) as the anode of lithium-ion batteries. Meanwhile, graphene is used as a dispersion medium to reduce the accumulation of bulk covalent organic frameworks (COFs) to obtain COFs with small-volume and few-layers, shortening the ion migration path and improving the diffusion rate of lithium ions in the two dimensional (2D) grid layered structure. PMDA-NiPc-G showed a lithium-ion diffusion coefficient (DLi + ) of 3.04 × 10-10 cm2 s-1 which is 3.6 times to that of its bulk form (0.84 × 10-10 cm2 s-1 ). Remarkably, this enables a large reversible capacity of 1290 mAh g-1 can be achieved after 300 cycles and almost no capacity fading in the next 300 cycles at 100 mA g-1 . At a high areal capacity loading of ≈3 mAh cm-2 , full batteries assembled with LiNi0.8 Co0.1 Mn0.1 O2 (NCM-811) and LiFePO4 (LFP) cathodes showed 60.2% and 74.7% capacity retention at 1 C for 200 cycles. Astonishingly, the PMDA-NiPc-G/NCM-811 full battery exhibits ≈100% capacity retention after cycling at 0.2 C. Aided by the analysis of kinetic behavior of lithium storage and theoretical calculations, the capacity-enhancing mechanism and lithium storage mechanism of covalent organic frameworks are revealed. This work may lead to more research on designable, multifunctional COFs for electrochemical energy storage.
Collapse
Affiliation(s)
- Jianjun Zhao
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
- State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Miaomiao Zhou
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
- School of Chemical&Environmental Engineering, China University of Mining and Technology(Beijing), Beijing, 100083, China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Luyi Wang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Qian Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Shengwen Zhong
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, P.R. China
| | - Yutao Li
- Institute of Physics (IOP), Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Wang L, Zhao J, Chen J, Jiang T, Zhang Q, Zhong S, Dmytro S. Phenediamine bridging phthalocyanine-based covalent organic framework polymers used as anode materials for lithium-ion batteries. Phys Chem Chem Phys 2023; 25:8050-8063. [PMID: 36876636 DOI: 10.1039/d3cp00007a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In this study, phenediamine bridging phthalocyanine-based covalent organic framework materials (CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA) with increasingly-widening pore sizes are prepared by reacting cobalt octacarboxylate phthalocyanine with p-phenylenediamine (PDA), benzidine (BDA) and 4,4''-diamino-p-terphenyl (TDA), respectively. The effects of frame size on the morphology structure and its electrochemical properties were explored. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) images show that the pore sizes of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are about 1.7 nm, 2.0 nm and 2.3 nm, respectively, which are close to the simulated results after geometric conformation optimization using Material Studio software. In addition, the specific surface areas of CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are 62, 81 and 137 m2 g-1, respectively. With increase in the frame size, the specific surface area of the corresponding material increases, which is bound to produce different electrochemical behaviors. Consequently, the initial capacities of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes in lithium-ion batteries (LIBs) are 204, 251 and 382 mA h g-1, respectively. As the charge and discharge processes continue, the active points in the electrode material are continuously activated, leading to a continuous increase in charge and discharge capacities. After 300 cycles, the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes exhibit capacities of 519, 680 and 826 mA h g-1, respectively, and after 600 cycles, the capacities are maintained at 602, 701 and 865 mA h g-1, respectively, with a stable capacity retention rate at a current density of 100 mA g-1. The results show that the large-size frame structure materials have a larger specific surface area and more favorable lithium ion transmission channels, which produce greater active point utilization and smaller charge transmission impedance, thus showing larger charge and discharge capacity and superior rate capability. This study fully confirms that frame size is a key factor affecting the properties of organic frame electrodes, providing design ideas for the development of high-performance organic frame electrode materials.
Collapse
Affiliation(s)
- Luyi Wang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jianjun Zhao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Tingting Jiang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Sydorov Dmytro
- Joint Department of Electrochemical Energy Systems, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 38A Vernadsky Ave, Kiev, 03142, Ukraine
| |
Collapse
|
4
|
Tao L, Chen J, Zhao J, Dmytro S, Zhang Q, Zhong S. Graphene in situ composite metal phthalocyanines (TN-MPc@GN, M = Fe, Co, Ni) with improved performance as anode materials for lithium ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01835g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In view of the disadvantage of the limited active site utilization due to the easy aggregation of phthalocyanine compounds, three kinds of graphene composite metal phthalocyanines (TN-MPc@GN, M = Fe, Co, Ni) were prepared using an in situ composite method, and their electrochemical properties were investigated as anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Lihong Tao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Jianjun Zhao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Sydorov Dmytro
- Joint Department of Electrochemical Energy Systems, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 38A Vernadsky Ave, Kiev, 03142, Ukraine
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| |
Collapse
|
5
|
Zhao J, Xu Y, Chen J, Tao L, Ou C, Lv W, Zhong S. A phthalocyanine-grafted MA-VA framework polymer as a high performance anode material for lithium/sodium-ion batteries. Dalton Trans 2021; 50:9858-9870. [PMID: 34195718 DOI: 10.1039/d1dt01400e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous MA-VA-PcNi polymer was prepared by grafting nickel phthalocyanine (PcNi) onto the main chain of a maleic anhydride-vinyl acetate (MA-VA) polymer, and an MA-VA-PcNi electrode is prepared by electrospinning technology to inhibit the agglomeration of the active powder effectively, which produces spherical particles with a diameter of 100-300 nm. The synthesized MA-VA-PcNi polymer is used as the anode for lithium-ion and sodium-ion batteries, exhibiting excellent energy storage behaviors. The MA-VA-PcNi/Li battery displays a high capacity of 610 mA h g-1 and can still remain at 507 mA h g-1 with a retention rate of 83.1% after 400 cycles at a current density of 200 mA g-1. Even at a high current density of 2 A g-1, the specific capacity can remain at 195 mA h g-1. In addition, the MA-VA-PcNi/Na battery displays a high capacity of 336 mA h g-1 and can still remain at 278 mA h g-1 with a retention rate of 82.7% after 400 cycles at a current density of 100 mA g-1. A high specific capacity of 164 mA h g-1 can also be achieved at a high current density of 1 A g-1. After nickel phthalocyanine (PcNi) was grafted onto the MA-VA polymer, aggregation between phthalocyanine rings was effectively prevented, and this exposes more active sites. At the same time, the spherical particles obtained by electrospinning technology further improve the dispersion and increase the number of active sites of the active materials. Finally, the electrode materials show excellent energy storage behavior for lithium-ion and sodium-ion batteries, which provides a new idea for designing high-performance energy storage materials for organic electrodes.
Collapse
Affiliation(s)
- Jianjun Zhao
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Yong Xu
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Lihong Tao
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Caixia Ou
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Weixia Lv
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Shengwen Zhong
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| |
Collapse
|
6
|
Cui TL, Zhang WB, Chen JJ, Zhang BW, Wang H, Zhang XJ. Fabrication of conjugated polyimides with porous crosslinked networks and their application as cathodes for lithium-ion batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj03925c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We synthesized a series of conjugated porous polymers with crosslinked networks and assessed their performance as cathodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Tian-Lu Cui
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Wen-Bei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Jun Chen
- Institute of Environmental & Catalytic Engineering, School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Bo-Wen Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xue-Jing Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
7
|
Lou Y, Rao X, Zhao J, Chen J, Li B, Kuang L, Wang Q, Zhong S, Wang H, Wu L. Graphite-like structure of disordered polynaphthalene hard carbon anode derived from the carbonization of perylene-3,4,9,10-tetracarboxylic dianhydride for fast-charging lithium-ion batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj02986j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The graphite-like PTCDA-1100 hard carbon is prepared, which exhibits mixed porous structure with wider layer spacing, larger specific surface area and more exposed active points. As a result, superior rate cycle behaviors for both PTCDA-1100/Li half-batteries and PTCDA-1100/NCM-811 full batteries are observed.
Collapse
Affiliation(s)
- Yitao Lou
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Xianfa Rao
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Jianjun Zhao
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Baobao Li
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Lei Kuang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Qiangzhong Wang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Hua Wang
- Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China
| | - Lijue Wu
- Guangdong Jiana Energy Technology Co Ltd, Qingyuan Jiazhi New Material Research Institute Co. Ltd., Qingyuan 511500, China
| |
Collapse
|
8
|
Ramaraghavulu R, Rao VK, Devarayapalli KC, Yoo K, Nagajyothi PC, Shim J. Green synthesized AgNPs decorated on Ketjen black for enhanced catalytic dye degradation. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Wang J, Shen Z, Yi M. Facile preparation of MoS 2/maleic acid composite as high-performance anode for lithium ion batteries. NEW J CHEM 2020. [DOI: 10.1039/d0nj03195j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a facile one-step method to prepare a MoS2 composite anode with excellent electrochemical performance and potential for practical applications in lithium ion batteries.
Collapse
Affiliation(s)
- Jingshi Wang
- Beijing Key Laboratory for Powder Technology Research and Development & School of Aeronautic Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Zhigang Shen
- Beijing Key Laboratory for Powder Technology Research and Development & School of Aeronautic Science and Engineering
- Beihang University
- Beijing 100191
- China
| | - Min Yi
- State Key Lab of Mechanics and Control of Mechanical Structures & Key Lab for Intelligent Nano Materials and Devices of Ministry of Education & College of Aerospace Engineering
- Nanjing University of Aeronautics and Astronautics (NUAA)
- Nanjing 210016
- China
| |
Collapse
|