1
|
Wang L, Lin C, Chong Q, Zhang Z, Meng F. Photoredox cobalt-catalyzed regio-, diastereo- and enantioselective propargylation of aldehydes via propargyl radicals. Nat Commun 2023; 14:4825. [PMID: 37563134 PMCID: PMC10415309 DOI: 10.1038/s41467-023-40488-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Catalytic enantioselective introduction of a propargyl group constitutes one of the most important carbon-carbon forming reactions, as it is versatile to be transformed into diverse functional groups and frequently used in the synthesis of natural products and biologically active molecules. Stereoconvergent transformations of racemic propargyl precursors to a single enantiomer of products via propargyl radicals represent a powerful strategy and provide new reactivity. However, only few Cu- or Ni-catalyzed protocols have been developed with limited reaction modes. Herein, a photoredox/cobalt-catalyzed regio-, diastereo- and enantioselective propargyl addition to aldehydes via propargyl radicals is presented, enabling construction of a broad scope of homopropargyl alcohols that are otherwise difficult to access in high efficiency and stereoselectivity from racemic propargyl carbonates. Mechanistic studies and DFT calculations provided evidence for the involvement of propargyl radicals, the origin of the stereoconvergent process and the stereochemical models.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, 430079, Hubei, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
| |
Collapse
|
2
|
|
3
|
Abstract
AbstractThis review updates the field of enantioselective indium-catalyzed transformations of all types since 2012. It shows that asymmetric indium catalysis, that suits the growing demand for greener processes, offers a real opportunity to replace toxic metals in the near future.1 Introduction2 Allylations, Propargylations, and Allenylations of Carbonyl Compounds and Derivatives2.1 Allylations2.2 Propargylations and Allenylations3 Cycloadditions3.1 Hetero-Diels–Alder Cycloadditions3.2 1,3-Dipolar Cycloadditions4 Miscellaneous Reactions5 Domino and Tandem Reactions6 Conclusion
Collapse
|