1
|
Murray M, Wetmore S. Unlocking precision in aptamer engineering: a case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter. Nucleic Acids Res 2024; 52:10823-10835. [PMID: 39217472 PMCID: PMC11472061 DOI: 10.1093/nar/gkae729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The thrombin binding aptamer (TBA) is a prototypical platform used to understand the impact of chemically-modified nucleotides on aptamer stability and target affinity. To provide structural insight into the experimentally-observed effects of modification size, location, and number on aptamer performance, long time-scale molecular dynamics (MD) simulations were performed on multiple binding orientations of TBA-thrombin complexes that contain a large, flexible tryptophan thymine derivative (T-W) or a truncated analogue (T-K). Depending on modification position, T-W alters aptamer-target binding orientations, fine-tunes aptamer-target interactions, strengthens networks of nucleic acid-protein contacts, and/or induces target conformational changes to enhance binding. The proximity and 5'-to-3' directionality of nucleic acid structural motifs also play integral roles in the behavior of the modifications. Modification size can differentially influence target binding by promoting more than one aptamer-target binding pose. Multiple modifications can synergistically strengthen aptamer-target binding by generating novel nucleic acid-protein structural motifs that are unobtainable for single modifications. By studying a diverse set of modified aptamers, our work uncovers design principles that must be considered in the future development of aptamers containing chemically-modified nucleotides for applications in medicine and biotechnology, highlighting the value of computational studies in nucleic acids research.
Collapse
Affiliation(s)
- Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Bi X, Li S, Yang F, Yuan R, Xiang Y. Cascaded autocatalytic hairpin assembly molecular circuit for amplified fluorescent aptamer luteinising hormone assay. Talanta 2024; 275:126150. [PMID: 38692046 DOI: 10.1016/j.talanta.2024.126150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The quantitative detection of luteinising hormone (LH) is critical for the study of the physiological mechanism of reproductive function and the assessment of infertility and the clinical treatment of reproductive disorders. However, conventional approaches for LH detection are mostly based on an antibody recognition module with the limitations of sensitivity, simplicity and cost. The development of robust LH sensing methods is therefore highly demanded for facilitating the diagnosis of LH-related diseases. We establish a convenient, amplified and sensitive fluorescent aptamer LH assay based on new target-triggered and cascaded autocatalytic hairpin assembly (C-aCHA) circuit amplification means via initiator sequence replication. Target LH molecules bind the aptamers in the aptamer/initiator duplexes to release the initiator sequences, which trigger CHA formation of DNA three-way junctions (TWJs) and the unfolding of fluorescently quenched signal hairpins to show amplified fluorescence. The TWJs further activate another CHA cycle for the yield of more initiator sequences to form the C-aCHA circuit amplification cycles, which lead to the unfolding of many signal hairpins to exhibit substantially magnified fluorescence recovery for detecting LH down to 8.56 pM in the range from 10 pM to 50 nM. In addition, the monitoring of trace LH in diluted serums by this sensing approach has been also verified. Our LH assay clearly outperforms current existing antibody-based methods and the C-aCHA signal amplification strategy can be easily extended as a robust means for sensitively monitoring various biomolecular markers with simple replacement of the corresponding aptamers for diverse applications.
Collapse
Affiliation(s)
- Xin Bi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Vaidyanathan S, Wijerathne H, Gamage SST, Shiri F, Zhao Z, Choi J, Park S, Witek MA, McKinney C, Verber M, Hall AR, Childers K, McNickle T, Mog S, Yeh E, Godwin AK, Soper SA. High Sensitivity Extended Nano-Coulter Counter for Detection of Viral Particles and Extracellular Vesicles. Anal Chem 2023; 95:9892-9900. [PMID: 37336762 PMCID: PMC11015478 DOI: 10.1021/acs.analchem.3c00855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
We present a chip-based extended nano-Coulter counter (XnCC) that can detect nanoparticles affinity-selected from biological samples with low concentration limit-of-detection that surpasses existing resistive pulse sensors by 2-3 orders of magnitude. The XnCC was engineered to contain 5 in-plane pores each with an effective diameter of 350 nm placed in parallel and can provide high detection efficiency for single particles translocating both hydrodynamically and electrokinetically through these pores. The XnCC was fabricated in cyclic olefin polymer (COP) via nanoinjection molding to allow for high-scale production. The concentration limit-of-detection of the XnCC was 5.5 × 103 particles/mL, which was a 1,100-fold improvement compared to a single in-plane pore device. The application examples of the XnCC included counting affinity selected SARS-CoV-2 viral particles from saliva samples using an aptamer and pillared microchip; the selection/XnCC assay could distinguish the COVID-19(+) saliva samples from those that were COVID-19(-). In the second example, ovarian cancer extracellular vesicles (EVs) were affinity selected using a pillared chip modified with a MUC16 monoclonal antibody. The affinity selection chip coupled with the XnCC was successful in discriminating between patients with high grade serous ovarian cancer and healthy donors using blood plasma as the input sample.
Collapse
Affiliation(s)
- Swarnagowri Vaidyanathan
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Sachindra S T Gamage
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Zheng Zhao
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Małgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Matthew Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina 27101, United States
| | - Katie Childers
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Taryn McNickle
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Shalee Mog
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Elaine Yeh
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Andrew K Godwin
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
4
|
Gamage SST, Pahattuge TN, Wijerathne H, Childers K, Vaidyanathan S, Athapattu US, Zhang L, Zhao Z, Hupert ML, Muller RM, Muller-Cohn J, Dickerson J, Dufek D, Geisbrecht BV, Pathak H, Pessetto Z, Gan GN, Choi J, Park S, Godwin AK, Witek MA, Soper SA. Microfluidic affinity selection of active SARS-CoV-2 virus particles. SCIENCE ADVANCES 2022; 8:eabn9665. [PMID: 36170362 PMCID: PMC9519043 DOI: 10.1126/sciadv.abn9665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/10/2022] [Indexed: 06/07/2023]
Abstract
We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus's S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip's surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent.
Collapse
Affiliation(s)
- Sachindra S. T. Gamage
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Thilanga N. Pahattuge
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Katie Childers
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Uditha S. Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Lulu Zhang
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Zheng Zhao
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Gregory N. Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew K. Godwin
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Smirnov I, Kolganova N, Troisi R, Sica F, Timofeev E. Expanding the recognition interface of the thrombin-binding aptamer HD1 through modification of residues T3 and T12. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:863-871. [PMID: 33614235 PMCID: PMC7868722 DOI: 10.1016/j.omtn.2021.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
Post-SELEX modification of DNA aptamers is an established strategy to improve their affinity or inhibitory characteristics. In this study, we examined the possibility of increasing the recognition interface between the thrombin-binding aptamer HD1 (TBA) and thrombin by adding a chemically modified side chain to selected nucleotide residues. A panel of 22 TBA variants with N3-modified residues T3 and T12 was prepared by a two-step modification procedure. Aptamers were characterized by a combination of biophysical and biochemical methods. We identified mutants with enhanced affinity and improved anticoagulant activity. The crystal structures of thrombin complexes with three selected modified variants revealed that the modified pyrimidine base invariably allocates in proximity to thrombin residues Tyr76 and Ile82 due to the directing role of the unmodified TT loop. The modifications induced an increase in the contact areas between thrombin and the modified TBAs. Comparative analysis of the structural, biochemical, and biophysical data suggests that the non-equivalent binding modes of the mutants with thrombin in the T3- and T12-modified series account for the observed systematic differences in their affinity characteristics. In this study, we show that extending the recognition surface between the protein and modified aptamers is a promising approach that may improve characteristics of aptamer ligands.
Collapse
Affiliation(s)
- Igor Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Natalia Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Edward Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Zhang Y, He J, Shen L, Wang T, Yang J, Li Y, Wang Y, Quan D. Brain-targeted delivery of obidoxime, using aptamer-modified liposomes, for detoxification of organophosphorus compounds. J Control Release 2020; 329:1117-1128. [PMID: 33096123 DOI: 10.1016/j.jconrel.2020.10.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Effective intracerebral delivery acetylcholinesterase (AChE) reactivator is key for the acute organophosphorus (OPs) poison treatment. However, the blood-brain barrier (BBB) restricts the transport of these drugs from blood into the brain. Herein, we developed transferrin receptor (TfR) aptamer-functionalized liposomes (Apt-LP) that could deliver AChE reactivator (obidoxime) across the BBB to act against paraoxon (POX) poisoning. The aptamer had strong affinity for TfR and was modified with 3'-inverted deoxythymidine (dT) to improve serum stability. The uptake of Apt-LP by bEnd.3 cells was significantly higher than that of non-targeting liposomes. The ability of Apt-LP to penetrate intact BBB was confirmed in in vitro BBB mice model and in vivo biodistribution studies. Treatment of POX-poisoned mice with Apt-LP-LuH-6 reactivated 18% of the brain AChE activity and prevented brain damage to some extent. Taken together, these results showed that Apt-LP may be used as a promising brain-targeted drug delivery system against OPs toxicity.
Collapse
Affiliation(s)
- Yadan Zhang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Junlin He
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Liao Shen
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Tao Wang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Jun Yang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Yao Li
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Yongan Wang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China.
| | - Dongqin Quan
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China.
| |
Collapse
|
7
|
Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int J Mol Sci 2020; 21:ijms21197394. [PMID: 33036411 PMCID: PMC7582658 DOI: 10.3390/ijms21197394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Aptamers are a novel technology enabling the continuous measurement of analytes in blood and other body compartments, without the need for repeated sampling and the associated reagent costs of traditional antibody-based methodologies. Aptamers are short single-stranded synthetic RNA or DNA that recognise and bind to specific targets. The conformational changes that can occur upon aptamer–ligand binding are transformed into chemical, fluorescent, colour changes and other readouts. Aptamers have been developed to detect and measure a variety of targets in vitro and in vivo. Gonadotropin-releasing hormone (GnRH) is a pulsatile hypothalamic hormone that is essential for normal fertility but difficult to measure in the peripheral circulation. However, pulsatile GnRH release results in pulsatile luteinizing hormone (LH) release from the pituitary gland. As such, LH pulsatility is the clinical gold standard method to determine GnRH pulsatility in humans. Aptamers have recently been shown to successfully bind to and measure GnRH and LH, and this review will focus on this specific area. However, due to the adaptability of aptamers, and their suitability for incorporation into portable devices, aptamer-based technology is likely to be used more widely in the future.
Collapse
|
8
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
9
|
Riccardi C, Meyer A, Vasseur JJ, Russo Krauss I, Paduano L, Morvan F, Montesarchio D. Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5'-3' connecting linker on the aptamer stability and anticoagulant activity. Bioorg Chem 2019; 94:103379. [PMID: 31699393 DOI: 10.1016/j.bioorg.2019.103379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
A small library of cyclic TBA analogues (named cycTBA I-IV), obtained by covalently connecting its 5'- and 3'-ends with flexible linkers, has been synthesized with the aim of improving its chemical and enzymatic stability, as well as its anticoagulant properties. Two chemical procedures have been exploited to achieve the desired cyclization, based on the oxime ligation method (providing cycTBA I and II) or on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC) protocols (for cycTBA III and IV), leading to analogues containing circularizing linkers with different chemical nature and length, overall spanning from 22 to 48 atoms. The resulting cyclic TBAs have been characterized using a variety of biophysical methods (UV, CD, gel electrophoresis, SE-HPLC analyses) and then tested for their serum resistance and anticoagulant activity under in vitro experiments. A fine-tuning of the length and flexibility of the linker allowed identifying a cyclic analogue, cycTBA II, with improved anticoagulant activity, associated with a dramatically stabilized G-quadruplex structure (ΔTm = +17 °C) and a 6.6-fold higher enzymatic resistance in serum compared to unmodified TBA.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy.
| |
Collapse
|