1
|
Islam T, Shim G, Melton D, Lewis CD, Lei Z, Gates KS. Ultrafast Reaction of the Drug Hydralazine with Apurinic/Apyrimidinic Sites in DNA Gives Rise to a Stable Triazolo[3,4- a]phthalazine Adduct. Chem Res Toxicol 2024; 37:1023-1034. [PMID: 38743824 DOI: 10.1021/acs.chemrestox.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The clinically used antihypertensive agent hydralazine rapidly generates hydrazone-derived adducts by reaction with apurinic/apyrimidinic (also known as abasic or AP) sites in many different sequences of duplex DNA. The reaction rates are comparable to those of some AP-trapping reagents previously described as "ultrafast." Initially, reversible formation of a hydrazone adduct is followed by an oxidative cyclization reaction that generates a chemically stable triazolo[3,4-a]phthalazine adduct. The net result is that the reaction of hydralazine with AP sites in duplex DNA yields a rapid and irreversible adduct formation. Although the hydrazone and triazolo[3,4-a]phthalazine adducts differ by only two mass units, it was possible to use MALDI-TOF-MS and ESI-QTOF-nanospray-MS to quantitatively characterize mixtures of these adducts by deconvolution of overlapping isotope envelopes. Reactions of hydralazine with the endogenous ketone pyruvate do not prevent the formation of the hydralazine-AP adducts, providing further evidence that these adducts have the potential to form in cellular DNA. AP sites are ubiquitous in cellular DNA, and rapid, irreversible adduct formation by hydralazine could be relevant to the pathogenesis of systemic drug-induced lupus erythematosus experienced by some patients. Finally, hydralazine might be developed as a probe for the detection of AP sites, the study of cellular BER, and marking the location of AP sites in DNA-sequencing analyses.
Collapse
Affiliation(s)
- Tanhaul Islam
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Garam Shim
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Douglas Melton
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Calvin D Lewis
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- University of Missouri, MU Metabolomics Center, 240f Christopher S. Bond Life Science Center, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Ganeson K, Tan Xue May C, Abdullah AAA, Ramakrishna S, Vigneswari S. Advantages and Prospective Implications of Smart Materials in Tissue Engineering: Piezoelectric, Shape Memory, and Hydrogels. Pharmaceutics 2023; 15:2356. [PMID: 37765324 PMCID: PMC10535616 DOI: 10.3390/pharmaceutics15092356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external stimuli. However, protein-based smart materials allow modular protein domains with different functionalities and responsive behaviours to be easily combined. Wherein, these "smart" behaviours can be tuned by amino acid identity and sequence. This review aims to give an insight into the design of smart materials, mainly protein-based piezoelectric materials, shape-memory materials, and hydrogels, as well as highlight the current progress and challenges of protein-based smart materials in tissue engineering. These materials have demonstrated outstanding regeneration of neural, skin, cartilage, bone, and cardiac tissues with great stimuli-responsive properties, biocompatibility, biodegradability, and biofunctionality.
Collapse
Affiliation(s)
- Keisheni Ganeson
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| | - Cindy Tan Xue May
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Amirul Al Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia;
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor 11700, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| |
Collapse
|
3
|
Ramírez-García JC, Vázquez-Ramírez R, Patiño ME, Aguirre-Cabrera C, Carranza V, Álvarez CMG. Theoretical study of Gibbs free energy and NMR chemical shifts, of the effect of methyl substituents on the isomers of (E)-1-(α,Ꞵ-Dimethylbenzyliden)-2,2-diphenylhydrazine. AN ACAD BRAS CIENC 2023; 95:e20220766. [PMID: 37466538 DOI: 10.1590/0001-3765202320220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/27/2023] [Indexed: 07/20/2023] Open
Abstract
A theoretical analysis of free Gibbs Energy and NMR 1H 13C chemical shifts of the effect of introduce methyl groups on diphenyl rings, to produce different isomers of (E)-1-(α,Ꞵ-dimethylbenzylidene)-2,2-diphenylhydrazine, is presented. IR vibrational frequencies, Mulliken charges, molecular electrostatic potential (MEP), Gibbs free energy (G) and 1H- and 13C-NMR chemical shifts were obtained by theoretical calculations. In this analysis it was found that the position of the methyl group affects the values of the 1H- and 13C-NMR chemical shifts and the ∆G and ∆H thermodynamic properties of formation and reaction, these properties vary with the same trend, for the isomers studied. Gibbs free energy calculations show that the theoretical (E)-1-(3,4-Dimethylbenzylidene)-2,2-diphenylhydrazine isomer is the most stable, which explains the success of the experimental synthesis of this compound among the other isomers. For this molecule, the C of the HC=N group is the most nucleophilic and the H is the least acidic. The 1H-NMR chemical shifts of protons show a strong correlation with the C=N distance. It was also observed that methyl affects the ν(C=N) frequencies, the C=N distance increases when the inductive effect of the methyl groups is in the structure.
Collapse
Affiliation(s)
- Juan Carlos Ramírez-García
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur Col. San Manuel, Ciudad Universitaria, Puebla, C.P. 72592 México
| | - Ricardo Vázquez-Ramírez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, D.F. 04510, México
| | - María Eugenia Patiño
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, P.O. Box 1067, C.P. 72001 México
| | - Carla Aguirre-Cabrera
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur Col. San Manuel, Ciudad Universitaria, Puebla, C.P. 72592 México
| | - Vladimir Carranza
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, P.O. Box 1067, C.P. 72001 México
| | - Carmen Mária González Álvarez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur Col. San Manuel, Ciudad Universitaria, Puebla, C.P. 72592 México
| |
Collapse
|
4
|
Dongare G, Aswar A. Synthesis of new heterocyclic N'-(2-hydroxy-3-methoxybenzylidene)-4-oxopiperidine-1-carbohydrazide and its mononuclear metal (II) complexes: spectroscopic characterization, fluorescence, DFT, thermo-kinetic, and antimicrobial studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Dascalu AE, Halgreen L, Torres-Huerta A, Valkenier H. Dynamic covalent chemistry with azines. Chem Commun (Camb) 2022; 58:11103-11106. [PMID: 36102679 DOI: 10.1039/d2cc03523e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic covalent chemistry is used in many applications that require both the stability of covalent bonds and the possibility to exchange building blocks. Here we present azines as a dynamic covalent functional group that combines the best characteristics of imines and acylhydrazones. We show that azines are stable in the presence of water and that dynamic combinatorial libraries of azines and aldehydes equilibrate in less than an hour.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Lau Halgreen
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| |
Collapse
|
6
|
Caillaud K, Ladavière C. Water‐soluble (poly)acylhydrazones: Syntheses and Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kilian Caillaud
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| | - Catherine Ladavière
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| |
Collapse
|
7
|
Tanriver M, Dzeng YC, Da Ros S, Lam E, Bode JW. Mechanism-Based Design of Quinoline Potassium Acyltrifluoroborates for Rapid Amide-Forming Ligations at Physiological pH. J Am Chem Soc 2021; 143:17557-17565. [PMID: 34647724 DOI: 10.1021/jacs.1c07354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Potassium acyltrifluoroborates (KATs) undergo chemoselective amide-forming ligations with hydroxylamines. Under aqueous, acidic conditions these ligations can proceed rapidly, with rate constants of ∼20 M-1 s-1. The requirement for lower pH to obtain the fastest rates, however, limits their use with certain biomolecules and precludes in vivo applications. By mechanistic investigations into the KAT ligation, including kinetic studies, X-ray crystallography, and DFT calculations, we have identified a key role for a proton in accelerating the ligation. We applied this knowledge to the design and synthesis of 8-quinolyl acyltrifluoroborates, a new class of KATs that ligates with hydroxylamines at pH 7.4 with rate constants >4 M-1 s-1. We trace the enhanced rate at physiological pH to unexpectedly high basicity of the 8-quinoline-KATs, which leads to their protonation even under neutral conditions. This proton assists the formation of the key tetrahedral intermediate and activates the leaving groups on the hydroxylamine toward a concerted 1,2-BF3 shift that leads to the amide product. We demonstrate that the fast ligations at pH 7.4 can be carried out with a protein substrate at micromolar concentrations.
Collapse
Affiliation(s)
- Matthias Tanriver
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Yi-Chung Dzeng
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Sara Da Ros
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Erwin Lam
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
8
|
Canal-Martín A, Navo CD, Sáez E, Molero D, Jiménez-Osés G, Pérez-Fernández R. Nucleophilic catalysis of p-substituted aniline derivatives in acylhydrazone formation and exchange. Org Biomol Chem 2021; 19:7202-7210. [PMID: 34612342 DOI: 10.1039/d1ob00871d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazone bond formation is a versatile reaction employed in several research fields. It is one of the most popular reversible reactions in dynamic combinatorial chemistry. Under physiological conditions, hydrazone exchange benefits from the addition of a nucleophilic catalyst. We report a mechanistic study and superior performance of electron-rich p-substituted aniline derivatives as catalysts for efficient hydrazone formation and exchange in both protic and aprotic solvents. Rigorous kinetic analyses demonstrate that imine formation with 3-hydroxy-4-nitrobenzaldehyde and aniline derivatives proceeds with unprecedented third-order kinetics in which the aldehyde consistently shows a partial order of two. Computational investigations provide insights into the mechanisms of these transformations.
Collapse
Affiliation(s)
- Andrea Canal-Martín
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid 28040, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Han GS, Domaille DW. Tuning the exchange dynamics of boronic acid hydrazones and oximes with pH and redox control. Org Biomol Chem 2021; 19:4986-4991. [PMID: 34008683 DOI: 10.1039/d1ob00191d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dynamic bonds continually form and dissociate at equilibrium. Carbonyl compounds with proximal boronic acids, including 2-formylphenylboronic acid (2-FPBA), have been reported to form highly dynamic covalent hydrazone and oxime bonds in physiological conditions, but strategies to tune the dynamics have not yet been reported. Here, we characterize the dynamics of 2-FPBA-derived hydrazones and oximes and account for both the rapid rate of formation (∼102-103 M-1 s-1) and the relatively fast rate of hydrolysis (∼10-4 s-1) at physiological pH. We further show that these substrates undergo exchange with α-nucleophiles, which can be reversibly paused and restarted with pH control. Finally, we show that oxidation of the arylboronic acid effectively abolishes the rapid dynamics, which slows the forward reaction by more than 30 000 times and increases the hydrolytic half-life from 50 minutes to 6 months at physiological pH. These results set the stage to explore these linkages in dynamic combinatorial libraries, reversible bioconjugation, and self-healing materials.
Collapse
Affiliation(s)
- Gun Su Han
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA.
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
10
|
Mati IK, Edwards W, Marson D, Howe EJ, Stinson S, Posocco P, Kay ER. Probing Multiscale Factors Affecting the Reactivity of Nanoparticle-Bound Molecules. ACS NANO 2021; 15:8295-8305. [PMID: 33938222 DOI: 10.1021/acsnano.0c09190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures and physicochemical properties of surface-stabilizing molecules play a critical role in defining the properties, interactions, and functionality of hybrid nanomaterials such as monolayer-stabilized nanoparticles. Concurrently, the distinct surface-bound interfacial environment imposes very specific conditions on molecular reactivity and behavior in this setting. Our ability to probe hybrid nanoscale systems experimentally remains limited, yet understanding the consequences of surface confinement on molecular reactivity is crucial for enabling predictive nanoparticle synthon approaches for postsynthesis engineering of nanoparticle surface chemistry and construction of devices and materials from nanoparticle components. Here, we have undertaken an integrated experimental and computational study of the reaction kinetics for nanoparticle-bound hydrazones, which provide a prototypical platform for understanding chemical reactivity in a nanoconfined setting. Systematic variation of just one molecular-scale structural parameter-the distance between reactive site and nanoparticle surface-showed that the surface-bound reactivity is influenced by multiscale effects. Nanoparticle-bound reactions were tracked in situ using 19F NMR spectroscopy, allowing direct comparison to the reactions of analogous substrates in bulk solution. The surface-confined reactions proceed more slowly than their solution-phase counterparts, and kinetic inhibition becomes more significant for reactive sites positioned closer to the nanoparticle surface. Molecular dynamics simulations allowed us to identify distinct supramolecular architectures and unexpected dynamic features of the surface-bound molecules that underpin the experimentally observed trends in reactivity. This study allows us to draw general conclusions regarding interlinked structural and dynamical features across several length scales that influence interfacial reactivity in monolayer-confined environments.
Collapse
Affiliation(s)
- Ioulia K Mati
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - William Edwards
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Domenico Marson
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Edward J Howe
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Scott Stinson
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
11
|
Maslarska V, Bozhanov S, Ivanova S, Angelova VT. Development and Validation of a Liquid Chromatographic Method for Aroylhydrazones at Hydrolytic Conditions. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191231094046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The indole-containing aroylhydrazone derivatives 3a-c with potent antimycobacterial
activity against a referent strain M. tuberculosis H37Rv and low cytotoxicity were evaluated
for their stability via the precise and accurate HPLC analytical method in aqueous media of different
pH (2.0, 7.0, 9.0 and 12.0).
Objective:
The study describes the development and validation of a simple and reliable HPLC-UV procedure
for the determination of aroylhydrazone derivatives and their hydrolytic stability. Additionally,
to recognize if hydrolysis leads to generating undesired products, the degradation processes were identified.
Method:
The separation was achieved with a LiChrosorb®RP-18 (250 x 4.6 mm) column, at ambient
temperature with isocratic mode with mobile phase containing mixture of component A (acetonitrile)
and component B (0.001M NaH2PO4, with 5 mM 1-heptane sulfonic acid sodium salt, adjusted to pH
3.0) in a ratio 60:40 (v/v). The flow rate was 1.0 ml/min and the eluent was monitored at 297 nm. The
proposed method was validated as per ICH guidelines.
Result:
The obtained results showed that the compounds were sensitive to hydrolytic decomposition in
aqueous media, resulting in the splitting of the hydrazone bond. Rapid hydrolysis of substances was
observed in the acid medium. The elevated temperature significantly accelerated the hydrolytic reaction.
Relatively slow hydrolysis of 3a-c was observed in a neutral solution and aqueous solutions buffered
to pH 9. The hydrolysis of 3a-c in neutral, alkaline and strong alkaline medium followed the pseudo-
first-order reaction rate and showed a linear dependence of lnC versus time.
Conclusion:
A validated high-performance liquid chromatographic assay for the determination of the
hydrolytic stability of a series of aroylhydrazones was developed and optimized for the first time. The
methods devised are successfully applicable to the development of pharmaceutical formulations.
Collapse
Affiliation(s)
- Vania Maslarska
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000 Sofia,Bulgaria
| | - Stanislav Bozhanov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000 Sofia,Bulgaria
| | - Stefka Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000 Sofia,Bulgaria
| | - Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., 1000 Sofia,Bulgaria
| |
Collapse
|
12
|
Rijpkema S, Langens SGHA, van der Kolk MR, Gavriel K, Toebes BJ, Wilson DA. Modular Approach to the Functionalization of Polymersomes. Biomacromolecules 2020; 21:1853-1864. [PMID: 32032491 PMCID: PMC7218747 DOI: 10.1021/acs.biomac.9b01734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Indexed: 01/17/2023]
Abstract
Functionalizing polymersomes remains a challenge due to the limitation in reaction conditions applicable to the chemistry on the surface, hindering their application for selective targeting. In order to overcome this limitation, functionalization can be introduced right before the self-assembly. Here, we have synthesized a library (32 examples) of PEG-b-PS and PEG-b-PDLLA with various functional groups derived from the amine-functionalized polymers, leading to functionally active polymersomes. We show that polymersome formation is possible via the general method with all functionalized groups and that these handles are present on the surface and are able to undergo reactions. Additionally, this methodology provides a general synthetic tool to tailor the functional group of the polymersome right before self-assembly, without limitation on the reaction conditions.
Collapse
Affiliation(s)
- Sjoerd
J. Rijpkema
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sabine G. H. A. Langens
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marnix R. van der Kolk
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Katerina Gavriel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - B. Jelle Toebes
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Osypenko A, Dhers S, Lehn JM. Pattern Generation and Information Transfer through a Liquid/Liquid Interface in 3D Constitutional Dynamic Networks of Imine Ligands in Response to Metal Cation Effectors. J Am Chem Soc 2019; 141:12724-12737. [DOI: 10.1021/jacs.9b05438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|