1
|
Ford JJ, Santos-Aberturas J, Hems ES, Sallmen JW, Bögeholz LAK, Polturak G, Osbourn A, Wright JA, Rodnina MV, Vereecke D, Francis IM, Truman AW. Identification of the lydiamycin biosynthetic gene cluster in a plant pathogen guides structural revision and identification of molecular target. Proc Natl Acad Sci U S A 2025; 122:e2424388122. [PMID: 40388608 DOI: 10.1073/pnas.2424388122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
The natural products actinonin and matlystatin feature an N-hydroxy-2-pentyl-succinamyl (HPS) chemophore that facilitates metal chelation and confers their metalloproteinase inhibitory activity. Actinonin is the most potent natural inhibitor of peptide deformylase (PDF) and exerts antimicrobial and herbicidal bioactivity by disrupting protein synthesis. Here, we used a genomics-led approach to identify candidate biosynthetic gene clusters (BGCs) hypothesized to produce HPS-containing natural products. We show that one of these BGCs is on the pathogenicity megaplasmid of the plant pathogen Rhodococcus fascians and produces lydiamycin A, a macrocyclic pentapeptide. The presence of genes predicted to make an HPS-like chemophore informed the structural recharacterization of lydiamycin via NMR and crystallography to show that it features a rare 2-pentyl-succinyl chemophore. We demonstrate that lydiamycin A inhibits bacterial PDF in vitro and show that a cluster-situated PDF gene confers resistance to lydiamycin A, representing an uncommon self-immunity mechanism associated with the production of a PDF inhibitor. In planta competition assays showed that lydiamycin enhances the fitness of R. fascians during plant colonization. This study highlights how a BGC can inform the structure, biochemical target, and ecological function of a natural product.
Collapse
Affiliation(s)
- Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Joseph W Sallmen
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lena A K Bögeholz
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joseph A Wright
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Danny Vereecke
- School of Nursing, Howest University of Applied Sciences, Bruges 8200, Belgium
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA 93311
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| |
Collapse
|
2
|
Uppalapati B, Aubry MA, Wang Q, Abdelhamid D, Gill MA, Beauchemin AM. Development and Applications of an Amide Linchpin Reagent. Angew Chem Int Ed Engl 2025; 64:e202421258. [PMID: 39576874 DOI: 10.1002/anie.202421258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Linchpin reagents are building blocks that can be chemoselectively functionalized to afford products with a common, useful functional group. In this work, we describe the development and validation of the first amide linchpin reagent and demonstrate its use as a doubly electrophilic building block for the synthesis of a variety of amides, including challenging classes. The linchpin reagent was first functionalized via rhodium-catalyzed electrophilic amination. Selected masked C-isocyanate products were then further derivatized with Grignard reagents to produce secondary amides, or tertiary amides if an alkylating agent was added subsequently. The success of this sequence relies on fully controlled reactivity at each electrophilic site, first exploiting the weak N-O bond and then, the ability to form the free isocyanate intermediate in situ. The overall transformation proceeds with high chemoselectivity, demonstrating the ability of this new linchpin reagent to form amides through atypical bond construction. Finally, the potential of this reagent as a more broadly applicable NCO linchpin is demonstrated by the formation of lactams and unsymmetrical ureas.
Collapse
Affiliation(s)
- Bhavana Uppalapati
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Maxime A Aubry
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Qiang Wang
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Dalia Abdelhamid
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
- Present Address: D.A. Raabe College of Pharmacy, Ohio Northern University, 525 S Main St, Ada, OH, 45810, United States
| | - Monica A Gill
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
3
|
Vargas JAM, Mandrekar KS, Echemendía R, Burtoloso ACB. Innovations in isocyanate synthesis for a sustainable future. Org Biomol Chem 2025; 23:487-505. [PMID: 39564673 DOI: 10.1039/d4ob01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Isocyanates play a crucial role as key building blocks in the production of thermoplastic foams, elastomers, adhesives, agrochemicals, and pharmaceuticals. These compounds are essential in the manufacture of various polymeric products, such as polyurethane foams, synthetic rubbers, and surface coatings. Given their significance, and the fact that many isocyanates are highly reactive and toxic, there is an increasing demand for innovative and sustainable methods for their synthesis and detection that emphasize safety, efficiency, and selectivity. Developing processes for isocyanate production that avoid hazardous reagents like phosgene is particularly critical. While several methods exist for the in situ generation of isocyanates, the search for an eco-friendly and sustainable approach for their direct synthesis and isolation continues. Recent advances in isocyanate synthesis promise innovative and efficient strategies with broad industrial and environmental benefits. This review highlights various methods for synthesizing di- and monoisocyanates, emphasizing their isolation and conversion into ureas and carbamates in line with the principles of sustainable and green chemistry.
Collapse
Affiliation(s)
- Jorge Andrés Mora Vargas
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| | - Ketan S Mandrekar
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| | - Radell Echemendía
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| | - Antonio C B Burtoloso
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| |
Collapse
|
4
|
Kweon J, Lee M, Kim D, Chang S. Stereoretentive Decarboxylative Amidation of α,β-Unsaturated Carboxylic Acids to Access Enamides. Org Lett 2024; 26:11167-11172. [PMID: 39665268 DOI: 10.1021/acs.orglett.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides. Density functional theory (DFT) calculations revealed a plausible reaction mechanism, which involves the nucleophilic addition of a carboxylate onto dioxazolone, followed by sequential concerted rearrangements.
Collapse
Affiliation(s)
- Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Minjeong Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
5
|
Gerogiannopoulou ADD, Mountanea OG, Routsi EA, Tzeli D, Kokotos CG, Kokotos G. Electron Donor-Acceptor Complex-Assisted Photochemical Conversion of O-2-Nitrobenzyl Protected Hydroxamates to Amides. Chemistry 2024; 30:e202402984. [PMID: 39343744 DOI: 10.1002/chem.202402984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The hydroxamic acid functionality is present in various medicinal agents and has attracted special interest for synthetic transformations in both organic and medicinal chemistry. The N-O bond cleavage of hydroxamic acid derivatives provides an interesting transformation for the generation of various products. We demonstrate, herein, that O-benzyl-type protected hydroxamic acids may undergo photochemical N-O bond cleavage, in the presence or absence of a catalyst, leading to amides. Although some O-benzyl protected aromatic hydroxamates may be photochemically converted to amides in the presence of a base and anthracene as the catalyst, employing O-2-nitrobenzyl group allowed the smooth conversion of both aliphatic and aromatic hydroxamates to primary or secondary amides in good to excellent yields in the presence of an amine, bypassing the need of a catalyst. DFT and UV-Vis studies supported the effective generation of an electron donor-acceptor (EDA) complex between O-2-nitrobenzyl hydroxamates and amines, which enabled the successful product formation under these photochemical conditions. An extensive substrate scope was demonstrated, showcasing that both aliphatic and aromatic hydroxamates are compatible with this protocol, affording a wide variety of primary and secondary amides.
Collapse
Affiliation(s)
- Anna-Dimitra D Gerogiannopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Olga G Mountanea
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - E Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
6
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Bao M, Łuczak K, Chaładaj W, Baird M, Gryko D, Doyle MP. Photo-cycloaddition reactions of vinyldiazo compounds. Nat Commun 2024; 15:4574. [PMID: 38811537 PMCID: PMC11137122 DOI: 10.1038/s41467-024-48274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Heterocyclic rings are important structural scaffolds encountered in both natural and synthetic compounds, and their biological activity often depends on these motifs. They are predominantly accessible via cycloaddition reactions, realized by either thermal, photochemical, or catalytic means. Various starting materials are utilized for this purpose, and, among them, diazo compounds are often encountered, especially vinyldiazo compounds that give access to donor-acceptor cyclopropenes which engage in [2+n] cycloaddition reactions. Herein, we describe the development of photochemical processes that produce diverse heterocyclic scaffolds from multisubstituted oximidovinyldiazo compounds. High chemoselectivity, good functional group tolerance, and excellent scalability characterize this methodology, thus predisposing it for broader applications. Experimental and computational studies reveal that under light irradiation these diazo reagents selectively transform into cyclopropenes which engage in cycloaddition reactions with various dipoles, while under thermal conditions the formation of pyrazole from vinyldiazo compounds is favored.
Collapse
Affiliation(s)
- Ming Bao
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Klaudia Łuczak
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Marriah Baird
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
8
|
Beletsan OB, Gordiy I, Lunkov SS, Kalinin MA, Alkhimova LE, Nosach EA, Ilin EA, Bespalov AV, Dallakyan OL, Chamkin AA, Prolomov IV, Zaripov RA, Pershin AA, Protsenko BO, Rusalev YV, Oganov RA, Kovaleva DK, Mironov VA, Dotsenko VV, Genaev AM, Sharapa DI, Tikhonov DS. From a humorous post to a detailed quantum-chemical study: isocyanate synthesis revisited. Phys Chem Chem Phys 2024; 26:13850-13861. [PMID: 38656824 DOI: 10.1039/d3cp04654k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Isocyanates play an essential role in modern manufacturing processes, especially in polyurethane production. There are numerous synthesis strategies for isocyanates both under industrial and laboratory conditions, which do not prevent searching for alternative highly efficient synthetic protocols. Here, we report a detailed theoretical investigation of the mechanism of sulfur dioxide-catalyzed rearrangement of phenylnitrile oxide into phenyl isocyanate, which was first reported in 1977. The DLPNO-CCSD(T) method and up-to-date DFT protocols were used to perform a highly accurate quantum-chemical study of the rearrangement mechanism. An overview of various organic and inorganic catalysts has revealed other potential catalysts, such as sulfur trioxide and selenium dioxide. Furthermore, the present study elucidated how substituents in phenylnitrile oxide influence reaction kinetics. This study was performed by a self-organized collaboration of scientists initiated by a humorous post on the VK social network.
Collapse
Affiliation(s)
- Oleg B Beletsan
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Gordiy
- ChemU Corporation Ltd, 17 17 Gr. Xenopoulou St., 3106 Limassol, Cyprus
| | - Sergey S Lunkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russia
| | - Mikhail A Kalinin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Larisa E Alkhimova
- Center for Nature-Inspired Engineering, University of Tyumen, 625003 Tyumen, Russia
- School of Natural Sciences, University of Tyumen, 625003 Tyumen, Russia
| | - Egor A Nosach
- Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Egor A Ilin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russia
| | - Alexandr V Bespalov
- Department of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Olgert L Dallakyan
- Computational Material Science Laboratory, Department of Physics, Yerevan State University, 0025 Yerevan, Armenia
| | - Aleksandr A Chamkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ilya V Prolomov
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russia
| | - Radion A Zaripov
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Andrey A Pershin
- Samara Branch of Lebedev Physical Institute, 443011 Samara, Russia
- Department of Physics, Samara University, 443086 Samara, Russia
| | - Bogdan O Protsenko
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Yury V Rusalev
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Ruslan A Oganov
- Department of Biochemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Diana K Kovaleva
- Department of Biochemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir A Mironov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Victor V Dotsenko
- Department of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
- Faculty of Chemistry and Pharmacy, North-Caucasus Federal University, 355017 Stavropol, Russia
| | - Alexandr M Genaev
- N.N. Vorozhtsov Institute of Organic Chemistry, 630090 Novosibirsk, Russia.
| | | | | |
Collapse
|
9
|
Raouf YS, Sedighi A, Geletu M, Frere GA, Allan RG, Nawar N, de Araujo ED, Gunning PT. Discovery of YSR734: A Covalent HDAC Inhibitor with Cellular Activity in Acute Myeloid Leukemia and Duchenne Muscular Dystrophy. J Med Chem 2023; 66:16658-16679. [PMID: 38060537 DOI: 10.1021/acs.jmedchem.3c01236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Histone deacetylases (HDACs) have emerged as powerful epigenetic modifiers of histone/non-histone proteins via catalyzing the deacetylation of ε-N-acetyl lysines. The dysregulated activity of these Zn2+-dependent hydrolases has been broadly implicated in disease, notably cancer. Clinically, the recurring dose-limiting toxicities of first-generation HDACi sparked a paradigm shift toward safer isoform-specific molecules. With pervasive roles in aggressive diseases, there remains a need for novel approaches to target these enzymes. Herein, we report the discovery of YSR734, a first-in-class covalent HDACi, with a 2-aminobenzanilide Zn2+ chelate and a pentafluorobenzenesulfonamide electrophile. This class I selective proof of concept modified HDAC2Cys274 (catalytic domain), with nM potency against HDAC1-3, sub-μM activity in MV4-11 cells, and limited cytotoxicity in MRC-9 fibroblasts. In C2C12 myoblasts, YSR734 activated muscle-specific biomarkers myogenin/Cav3, causing potent differentiation into myotubes (applications in Duchenne Muscular Dystrophy). Current efforts are focused on improving in vivo ADME toward a preclinical covalent HDACi.
Collapse
Affiliation(s)
- Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Geordon A Frere
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Rebecca G Allan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Chandrasekar N, Sharma K, Jain S, Shinde M, Patil G, Shah RP. A critical assessment on stability behaviour of Vorinostat using LC-MS-QTOF with H/D exchange and NMR. J Pharm Biomed Anal 2023; 236:115687. [PMID: 37657178 DOI: 10.1016/j.jpba.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Vorinostat is the first USFDA-approved HDAC inhibitor for the treatment of cutaneous t-cell lymphoma. Vorinostat was exposed to ICH-recommended hydrolytic (acid, base, and neutral), oxidative, thermal, and photolytic stress conditions to understand the degradation behaviour. A Stability indicating LC method was developed and validated for separating and identifying forced degradation products. Under different stress conditions, six degradants were identified and characterized by LC-HRMS, MS/MS, and hydrogen-deuterium exchange mass studies. Vorinostat was found to be highly susceptible to the acidic and basic environment. In contrast, the drug substance was stable in the solid state under thermal and photolytic conditions whereas, it was found moderately stable when photolytic stress was provided to dissolved state of Vorinostat in acetonitrile-water. The degradants were identified as 7-amino-N-phenylheptanamide, 8-hydrazineyl-8-oxo-N-phenyloctanamide, 8-oxo-8-(phenylamino)octanoic acid, 8-oxo-8-(2-(7-oxo-7-(phenylamino)heptyl)hydrazineyl)-N-phenyloctanamide, 8,8'-(1-hydroxyhydrazine-1,2-diyl)bis(8-oxo-N-phenyloctanamide), and N1-((8-oxo-8-(phenylamino)octanoyl)oxy)-N8-phenyloctanediamide. The mechanistic explanation for the formation of each degradant in stability conditions has also been derived. The major degradants were also isolated/synthesized and characterized through 1H NMR for preparing impurity standards. Additionally, in-silico toxicity of the degradants was predicted in comparison to the drug, to identify whether any degradant has any specific type of toxicity and requires special focus to set specification limits during formulation development. The predicted toxicity indicated that the degradants have similar safety profile as that of the drug and specification can be set as per general impurity guideline.
Collapse
Affiliation(s)
- Naveen Chandrasekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kalyani Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sonali Jain
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Muktabai Shinde
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Girish Patil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| |
Collapse
|
11
|
Wang R, Chen Y, Fei B, Hu J, Chen J, Luo Y, Xia Y. Condition-Controlled O-Acylation and N-O Bond Reduction of Hydroximic Acids with Thioacetic Acid. Org Lett 2023; 25:2970-2974. [PMID: 37087763 DOI: 10.1021/acs.orglett.3c00735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Condition-dependent transformations between hydroximic acids and thioacetic acid were achieved. Using NH4HCO3 in the ethanol solvent, efficient N-O bond cleavage of hydroxamic acids occurred to afford primary amides with high functional group compatibility. The reaction was switched to O-acylation when NEt3 and H2O were used as the base and solvent, respectively. These facile transformations could be scaled up to the gram level smoothly. Preliminary mechanistic studies suggested that the N-O bond cleavage involves a cascade process of acylation/reduction.
Collapse
Affiliation(s)
- Risong Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yifei Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Binjie Fei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Rehkopf L, Seidel J, Sindlinger J, Wang M, Kirchgäßner S, Schwarzer D. Synthesis of Nε-acetyl-L-homolysine by the Lossen rearrangement and its application for probing deacetylases and binding modules of acetyl-lysine. J Pept Sci 2023; 29:e3462. [PMID: 36416071 DOI: 10.1002/psc.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Lysine acetylation is a posttranslational protein modification mediating protein-protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.
Collapse
Affiliation(s)
- Luisa Rehkopf
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Julian Seidel
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Organic and Macromolecular Chemistry, Universität Jena, Jena, Germany
| | - Julia Sindlinger
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Inorganic and Analytical Chemistry, Mass Spectrometry Platform, Universität Jena, Jena, Germany
| | - Mary Wang
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Rahman ML, Sarjadi MS, Sarkar SM, Walsh DJ, Hannan JJ. Poly(hydroxamic acid) resins and their applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Incorporation of Rhodamine into a Host Polymer via In-Situ Generated Isocyanato Group and Application for the Detection of Cu2+ Ion. CRYSTALS 2022. [DOI: 10.3390/cryst12060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rhodamine-based fluorescent polymer P(MMA-co-RB) has been synthesized via an intermediate NCO-containing polymer generated by the Lossen rearrangement reaction. The fluorescent property of P(MMA-co-RB) with regard to metal ions, such as Cu2+, Fe3+, Cr3+, Al3+, Zn2+, Co2+, Sn2+ and Ag+, was studied by fluorescence emission spectroscopy. The results demonstrate that the fluorescence intensity of P(MMA-co-RB) decreased gradually with an increase of the concentration of Cu2+ ion. Furthermore, a test strip made of P(MMA-co-RB) can be used for fast and quantitative determination of Cu2+ ion. In the presence of Cu2+ ion, the sensory tester undergoes distinct changes in fluorescence intensity and visible color.
Collapse
|
15
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
16
|
Ishihara K, Shioiri T, Matsugi M. Synthesis of carbamoyl azides via the Lossen rearrangement utilizing diphenyl phosphorazidate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Lamberth C. Organic Isocyanates and Isothiocyanates: Versatile Intermediates in Agrochemistry. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1678-8528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractIn recent decades, organic isocyanates and isothiocyanates have been often applied as reactive intermediates in research syntheses or manufacturing routes of many agrochemicals. These heterocumulenes allowed the installation of crucial carboxylic functions, such as carbamates, ureas, and semicarbazones, but have also been used for the construction of five- and six-membered heterocycles, such as tetrazolones, thiazoles, and uracils.1 Introduction2 Preparation of Carboxylic Acid Functions3 Preparation of Heterocyclic Rings4 Conclusion
Collapse
|
18
|
Abstract
A state-of-the-art computational study of CHNO isomers is presented, including substituted derivatives and cyclotrimerization and deprotonation products.
Collapse
Affiliation(s)
- Alicia Rey Planells
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Murcia 30100, Spain
| | - Arturo Espinosa Ferao
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|
19
|
Baumann M, Moody TS, Smyth M, Wharry S. Interrupted Curtius Rearrangements of Quaternary Proline Derivatives: A Flow Route to Acyclic Ketones and Unsaturated Pyrrolidines. J Org Chem 2021; 86:14199-14206. [PMID: 34170701 PMCID: PMC8524412 DOI: 10.1021/acs.joc.1c01133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Conversion of N-Boc-protected quaternary proline
derivatives under thermal Curtius rearrangement conditions was found
to afford a series of ring-opened ketone and unsaturated pyrrolidine
products instead of the expected carbamate species. The nature of
the substituent on the quaternary carbon thereby governs the product
outcome due to the stability of a postulated N-acyliminium
species. A continuous flow process with in-line scavenging was furthermore
developed to streamline this transformation and safely create products
on a gram scale.
Collapse
Affiliation(s)
- Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield D04 N2E2, Ireland
| | - Thomas S Moody
- Department of Technology, Almac Sciences, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom.,Arran Chemical Company, Roscommon N37 DN24, Ireland
| | - Megan Smyth
- Department of Technology, Almac Sciences, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - Scott Wharry
- Department of Technology, Almac Sciences, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| |
Collapse
|
20
|
Jung HJ, Park S, Lee HS, Shin HG, Yoo Y, Baral ER, Lee JH, Kwak J, Kim JG. Chemical Upcycling of Waste Poly(bisphenol A carbonate) to 1,4,2-Dioxazol-5-ones and One-Pot C-H Amidation. CHEMSUSCHEM 2021; 14:4301-4306. [PMID: 34129287 DOI: 10.1002/cssc.202100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Chemical upcycling of poly(bisphenol A carbonate) (PC) was achieved in this study with hydroxamic acid nucleophiles, giving rise to synthetically valuable 1,4,2-dioxazol-5-ones and bisphenol A. Using 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD), non-green carbodiimidazole or phosgene carbonylation agents used in conventional dioxazolone synthesis were successfully replaced with PC, and environmentally harmful bisphenol A was simultaneously recovered. Assorted hydroxamic acids exhibited good-to-excellent efficiencies and green chemical features, promising broad synthetic application scope. In addition, a green aryl amide synthesis process was developed, involving one-pot depolymerization from polycarbonate to dioxazolone followed by rhodium-catalyzed C-H amidation, including gram-scale examples with used compact discs.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Sub Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Gyu Shin
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeji Yoo
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ek Raj Baral
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Deajeon, 34114, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
21
|
Linciano P, Pinzi L, Belluti S, Chianese U, Benedetti R, Moi D, Altucci L, Franchini S, Imbriano C, Sorbi C, Rastelli G. Inhibitors of histone deacetylase 6 based on a novel 3-hydroxy-isoxazole zinc binding group. J Enzyme Inhib Med Chem 2021; 36:2080-2086. [PMID: 34583596 PMCID: PMC8480759 DOI: 10.1080/14756366.2021.1981306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is an established drug target for cancer treatment. Inhibitors of HDAC6 based on a hydroxamic acid zinc binding group (ZBG) are often associated with undesirable side effects. Herein, we describe the identification of HDAC6 inhibitors based on a completely new 3-hydroxy-isoxazole ZBG. A series of derivatives decorated with different aromatic or heteroaromatic linkers, and various cap groups were synthesised and biologically tested. In vitro tests demonstrated that some compounds are able to inhibit HDAC6 with good potency, the best candidate reaching an IC50 of 700 nM. Such good potency obtained with a completely new ZBG make these compounds particularly attractive. The effect of the most active inhibitors on the acetylation levels of histone H3 and α- tubulin and their anti-proliferative activity of DU145 cells were also investigated. Docking studies were performed to evaluate the binding mode of these new derivatives and discuss structure-activity relationships.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Citarella A, Moi D, Pinzi L, Bonanni D, Rastelli G. Hydroxamic Acid Derivatives: From Synthetic Strategies to Medicinal Chemistry Applications. ACS OMEGA 2021; 6:21843-21849. [PMID: 34497879 PMCID: PMC8412920 DOI: 10.1021/acsomega.1c03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 05/03/2023]
Abstract
Since the approval of three hydroxamic acid-based HDAC inhibitors as anticancer drugs, such functional groups acquired even more notoriety in synthetic medicinal chemistry. The ability of hydroxamic acids (HAs) to chelate metal ions makes this moiety an attractive metal binding group-in particular, Fe(III) and Zn(II)-so that HA derivatives find wide applications as metalloenzymes inhibitors. In this minireview, we will discuss the most relevant features concerning hydroxamic acid derivatives. In a first instance, the physicochemical characteristics of HAs will be summarized; then, an exhaustive description of the most relevant methods for the introduction of such moiety into organic substrates and an overview of their uses in medicinal chemistry will be presented.
Collapse
|
23
|
Virieux D, Delogu F, Porcheddu A, García F, Colacino E. Mechanochemical Rearrangements. J Org Chem 2021; 86:13885-13894. [PMID: 34259516 DOI: 10.1021/acs.joc.1c01323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Collapse
Affiliation(s)
- David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Universita degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, 09028 Cagliari, Italy
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, 21 Nanyang Link, 63737 Singapore
| | | |
Collapse
|
24
|
Majewski A, Chojnacki J, Przychodzeń W. Unexpected Z/E isomerism of N-methyl-O-phosphothioyl benzohydroxamic acids, their oxyphilic reactivity and inertness to amines. Struct Chem 2021. [DOI: 10.1007/s11224-020-01719-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
26
|
Saha D, Taily IM, Kumar R, Banerjee P. Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chem Commun (Camb) 2021; 57:2464-2478. [PMID: 33616597 DOI: 10.1039/d1cc00116g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rearrangement reactions constitute a critical facet of synthetic organic chemistry and demonstrate an attractive way to take advantage of existing structures to access various important molecular frameworks. Electroorganic chemistry has emerged as an environmentally benign approach to carry out organic transformations by directly employing an electric current and avoids the use of stoichiometric chemical oxidants. The last few years have witnessed a resurgence of electroorganic chemistry that has promoted a renaissance of interest in the development of novel redox electroorganic transformations. This review manifests the evolution of electrosynthesis in the area of rearrangement chemistry and covers the achievements in the field of migration, ring expansion, and rearrangements along with the mechanisms involved.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
27
|
López R, Palomo C. N,N-Diacylaminals as Emerging Tools in Synthesis: From Peptidomimetics to Asymmetric Catalysis. Chemistry 2021; 27:20-29. [PMID: 32667706 DOI: 10.1002/chem.202002637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Indexed: 12/26/2022]
Abstract
N,N-Diacylaminals are flexible molecular scaffolds that have commonly been utilized as amide surrogates in peptidomimetics. The singularities of this motif as an N-acyl imine equivalent and as hydrogen-bond donor have recently opened new synthetic opportunities, especially in the field of asymmetric catalysis. This concept article highlights this diverse synthetic potential and provides the elements necessary for further developments.
Collapse
Affiliation(s)
- Rosa López
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| |
Collapse
|
28
|
Zuo Y, He X, Tang Q, Hu W, Zhou T, Hu W, Shang Y. Palladium‐Catalyzed 5‐
exo‐dig
Cyclization Cascade, Sequential Amination/Etherification for Stereoselective Construction of 3‐Methyleneindolinones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Youpeng Zuo
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Wangcheng Hu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Wenbo Hu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
29
|
Schäfer G, Ahmetovic M, Fleischer T, Abele S. Development of a Scalable Route for a Highly Polar Heterocyclic Aminocyclopropyl Building Block. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel Schäfer
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Muhamed Ahmetovic
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Tony Fleischer
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Stefan Abele
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
30
|
Zhang G, Cui Y, Zhao Y, Cui Y, Bao S, Ding C. A Practical Approach to Ureas and Thiocarbamates: SO
2
F
2
‐Promoted Lossen Rearrangement of Hydroxamic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guofu Zhang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yin Cui
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Emission Trading Center Hangzhou 310012 P. R. China
| | - Yunqiang Cui
- Zhejiang Yuntao Biotechnology Co., Ltd Shaoxing 312369 P. R. China
| | - Shenxiao Bao
- Hangzhou Sandun Middle School Hangzhou 310030 P. R. China
| | - Chengrong Ding
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
31
|
Mocniak LE, Elkin K, Bollinger JM. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Biochemistry 2020; 59:2432-2441. [PMID: 32516526 DOI: 10.1021/acs.biochem.0c00358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specifier proteins (SPs) are components of the glucosinolate-myrosinase defense system found in plants of the order Brassicales (brassicas). Glucosinolates (GLSs) comprise at least 150 known S-(β-d-glucopyranosyl)thiohydroximate-O-sulfonate compounds, each with a distinguishing side chain linked to the central carbon. Following tissue injury, the enzyme myrosinase (MYR) promiscuously hydrolyzes the common thioglycosidic linkage of GLSs to produce unstable aglycone intermediates, which can readily undergo a Lossen-like rearrangement to the corresponding organoisothiocyanates. The known SPs share a common protein architecture but redirect the breakdown of aglycones to different stable products: epithionitrile (ESP), nitrile (NSP), or thiocyanate (TFP). The different effects of these products on brassica consumers motivate efforts to understand the defense response in chemical detail. Experimental analysis of SP mechanisms is challenged by the instability of the aglycones and would be facilitated by knowledge of their lifetimes. We developed a spectrophotometric method that we used to monitor the rearrangement reactions of the MYR-generated aglycones from nine GLSs, discovering that their half-lives (t1/2) vary by a factor of more than 50, from <3 to 150 s (22 °C). The t1/2 of the sinigrin-derived allyl aglycone (34 s), which can form the epithionitrile product (1-cyano-2,3-epithiopropane) in the presence of ESP, proved to be sufficient to enable spatial and temporal separation of the MYR and ESP reactions. The results confirm recent proposals that ESP is an autonomous iron-dependent enzyme that intercepts the unstable aglycone rather than a direct effector of MYR. Knowledge of aglycone lifetimes will enable elucidation of how the various SPs reroute aglycones to different products.
Collapse
Affiliation(s)
| | - Kyle Elkin
- Pasture Systems and Watershed Management Research Unit, United States Department of Agriculture Agricultural Research Service, Building 3702 Curtin Road, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|