1
|
Wang S, Yan N, Yang Y, Sun L, Huang Y, Zhang J, Xu G. Screening of drug targets for tuberculosis on the basis of transcription factor regulatory network and mRNA sequencing technology. Front Mol Biosci 2024; 11:1410445. [PMID: 38841189 PMCID: PMC11150615 DOI: 10.3389/fmolb.2024.1410445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Background Tuberculosis is a worldwide epidemic disease, posing a serious threat to human health. To find effective drug action targets for Mycobacterium tuberculosis, differentially expressed genes in tuberculosis patients and healthy people were screened by mRNA sequencing in this study. A total of 556 differentially expressed genes in tuberculosis patients and healthy people were screened out by mRNA sequencing technology. 26 transcription factors and 66 corresponding target genes were screened out in the AnimalTFDB 3.0 database, and a transcription factor regulatory network was constructed. Results Three key transcription factors (TP53, KLF5 and GATA2) and one key gene (AKT1) were screened as new potential drug targets and diagnostic targets for tuberculosis by MCODE cluster analysis, and the key genes and key transcription factors were verified by RT-PCR. Finally, we constructed the and a key factor and KEGG signaling pathway regulatory network to clarify the possible molecular pathogenesis of tuberculosis. Conclusion This study suggested M. tuberculosis may activate the AKT1 gene expression by regulating transcription factors TP53, KLF5, and GATA2, thus activating the B cell receptor signaling pathway to induce the infection and invasion of M. tuberculosis. AKT1, TP53, KLF5, and GATA2 can be used as new potential drug targets for tuberculosis.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Na Yan
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Yue Yang
- College of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Li Sun
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Yingxin Huang
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Jian Zhang
- Department of Infectious Disease, Changchun Infectious Disease Hospital, Changchun, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, Jilin, China
| |
Collapse
|
2
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
3
|
Gnanavelu K, K S VK, Eswaran S, Sivashanmugam K. Novel quinoline-piperazine hybrids: the design, synthesis and evaluation of antibacterial and antituberculosis properties. RSC Med Chem 2023; 14:183-189. [PMID: 36760744 PMCID: PMC9890665 DOI: 10.1039/d2md00260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
A communicable disease such as tuberculosis (TB), which takes ∼10 million lives worldwide every year, is one of the major concerns for future generations. The intake of multiple antibiotics is increasing because of the emergence of multiple drug-resistant TB (MDR-TB) to pathogens which do not respond to the first-line TB drugs. Even though numerous drugs are available on the market, there is a huge need for MDR-TB drugs. Herein, our emphasis was to synthesise a series of 2,4,6-substituted quinoline conjugated piperazine coupled sulfonamides, as well as amides, and to study and evaluate their in vitro antibacterial activity against both susceptible and resistant pathogens of Gram-positive and Gram-negative bacteria. Furthermore, their antituberculosis activity was assessed against non-virulent, virulent and MDR pathogens. Few compounds displayed inhibitory activity against bacterial growth, but two compounds displayed significant inhibitory activity against all the TB strains (lowest MIC of 10g is 0.07 μM and 11e is 1.1 μM), which are more effective than other 1st line and 2nd line TB drugs. These two compounds are less cytotoxic, and could be developed as antibiotics or MDR-TB drugs by improving their hydrophilicity.
Collapse
Affiliation(s)
- Karunanidhi Gnanavelu
- Anthem Biosciences Pvt. Ltd. #49, Bommasandra Industrial Area, Bommasandra Bangalore 560099 Karnataka India
- School of Bio-Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu 632014 India
| | - Vinay Kumar K S
- Anthem Biosciences Pvt. Ltd. #49, Bommasandra Industrial Area, Bommasandra Bangalore 560099 Karnataka India
| | - Sumesh Eswaran
- Anthem Biosciences Pvt. Ltd. #49, Bommasandra Industrial Area, Bommasandra Bangalore 560099 Karnataka India
| | - Karthikeyan Sivashanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu 632014 India
| |
Collapse
|
4
|
Sangu KG, Dasugari varakala S, Krishna EV, Akhir A, Saxena D, Ahmad MN, Chopra S, Misra S, Sriram D, Rode HB. Synthesis and Bio‐evaluation of GR135486X Derivatives as Potent Anti‐Tubercular Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Komal G. Sangu
- Department of Organic Synthesis and Process Chemistry CSIR – Indian Institute of Chemical Technology Tarnaka Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
| | - Saiprasad Dasugari varakala
- Department of Pharmacy Birla Institute of Technology & Science-Pilani, Hyderabad Campus,Jawahar Nagar, Shameerpet mandal, R.R. District Hyderabad 500 078 India
| | - Eruva Vamshi Krishna
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500 007 India
| | - Abdul Akhir
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Deepanshi Saxena
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Mohammad Naiyaz Ahmad
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
- Department of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow 226 031 Uttar Pradesh India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500 007 India
| | - Dharmarajan Sriram
- Department of Pharmacy Birla Institute of Technology & Science-Pilani, Hyderabad Campus,Jawahar Nagar, Shameerpet mandal, R.R. District Hyderabad 500 078 India
| | - Haridas B. Rode
- Department of Organic Synthesis and Process Chemistry CSIR – Indian Institute of Chemical Technology Tarnaka Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh-201 002 India
| |
Collapse
|
5
|
Zabihollahi Z, Bikas R, Hossaini-Sadr M, Kozakiewicz-Piekarz A, Soltani B. Tetranuclear Zn(II) complexes with ditopic picolinohydrazone ligands: Synthesis, crystal structure, spectroscopic studies, and Hirschfeld surface analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang KW. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 2022; 28:e3428. [PMID: 35610021 DOI: 10.1002/psc.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Discovering new antibiotics with novel chemical scaffolds and antibacterial mechanisms presents a challenge for medicinal scientists worldwide as the ever-increasing bacterial resistance poses a serious threat to human health. A new cyclic peptide-based antibiotic termed teixobactin was discovered from a screen of uncultured soil bacteria through iChip technology in 2015. Teixobactin exhibits excellent antibacterial activity against all the tested gram-positive pathogens and Mycobacterium tuberculosis, including drug-resistant strains. Given that teixobactin targets the highly conserved lipid II and lipid III, which induces the simultaneous inhibition of both peptidoglycan and teichoic acid synthesis, the emergence of resistance is considered to be rather difficult. The novel structure, potent antibacterial activity, and highly conservative targets make teixobactin a promising lead compound for further antibiotic development. This review provides a comprehensive treatise on the advances of teixobactin in the areas of discovery processes, antibacterial activity, mechanisms of action, chemical synthesis, and structural optimizations. The synthetic methods for the key building block l-allo-End, natural teixobactin, representative teixobactin analogues, as well as the structure-activity relationship studies will be highlighted and discussed in details. Finally, some insights into new trends for the generation of novel teixobactin analogues and tips for future work and directions will be commented.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ning-Ning Wei
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Cheng-Jian Pang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ke Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals (Basel) 2022; 15:ph15050561. [PMID: 35631389 PMCID: PMC9144801 DOI: 10.3390/ph15050561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Nitroimidazole represents one of the most essential and unique scaffolds in drug discovery since its discovery in the 1950s. It was K. Maeda in Japan who reported in 1953 the first nitroimidazole as a natural product from Nocardia mesenterica with antibacterial activity, which was later identified as Azomycin 1 (2-nitroimidazole) and remained in focus until now. This natural antibiotic was the starting point for synthesizing numerous analogs and regio-isomers, leading to several life-saving drugs and clinical candidates against a number of diseases, including infections (bacterial, viral, parasitic) and cancers, as well as imaging agents in medicine/diagnosis. In the present decade, the nitroimidazole scaffold has again been given two life-saving drugs (Delamanid and Pretomanid) used to treat MDR (multi-drug resistant) tuberculosis. Keeping in view the highly successful track-record of the nitroimidazole scaffold in providing breakthrough therapeutic drugs, this comprehensive review focuses explicitly on presenting the activity profile and synthetic chemistry of functionalized nitroimidazole (2-, 4- and 5-nitroimidazoles as well as the fused nitroimidazoles) based drugs and leads published from 1950 to 2021. The present review also presents the miscellaneous examples in each class. In addition, the mutagenic profile of nitroimidazole-based drugs and leads and derivatives is also discussed.
Collapse
|
8
|
Skrzypczak N, Przybylski P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins. Nat Prod Rep 2022; 39:1653-1677. [PMID: 35244668 DOI: 10.1039/d2np00002d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2011 to 2021Structural division of natural naphthalenoid ansamycins, regarding the type of the core and length of the ansa chain, and their biosynthetic pathways in microorganisms are discussed. The great biosynthetic plasticity of natural naphthalenoid ansamycins is reflected in their structural variety due to the alterations within ansa bridge or naphthalenoid core portions. A comparison between the biological potency of natural and semisynthetic naphthalenoid ansamycins was performed and discussed in relation to the molecular targets in cells. The antibacterial potency of naphthalenoid ansamycins seems to be dependent on the ansa chain length and conformational flexibility - the higher flexibility of the ansa chain the better biological outcome is noted.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
9
|
Yelamanchi SD, Arun Kumar ST, Mishra A, Keshava Prasad TS, Surolia A. Metabolite Dysregulation by Pranlukast in Mycobacterium tuberculosis. Molecules 2022; 27:1520. [PMID: 35268621 PMCID: PMC8911922 DOI: 10.3390/molecules27051520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis has been infecting millions of people worldwide over the years, causing tuberculosis. Drugs targeting distinct cellular mechanisms including synthesis of the cell wall, lipids, proteins, and nucleic acids in Mtb are currently being used for the treatment of TB. Although extensive research is being carried out at the molecular level in the infected host and pathogen, the identification of suitable drug targets and drugs remains under explored. Pranlukast, an allosteric inhibitor of MtArgJ (Mtb ornithine acetyltransferase) has previously been shown to inhibit the survival and virulence of Mtb. The main objective of this study was to identify the altered metabolic pathways and biological processes associated with the differentially expressed metabolites by PRK in Mtb. Here in this study, metabolomics was carried out using an LC-MS/MS-based approach. Collectively, 50 metabolites were identified to be differentially expressed with a significant p-value through a global metabolomic approach using a high-resolution mass spectrometer. Metabolites downstream of argJ were downregulated in the arginine biosynthetic pathway following pranlukast treatment. Predicted human protein interactors of pranlukast-treated Mtb metabolome were identified in association with autophagy, inflammation, DNA repair, and other immune-related processes. Further metabolites including N-acetylglutamate, argininosuccinate, L-arginine, succinate, ergothioneine, and L-phenylalanine were validated by multiple reaction monitoring, a targeted mass spectrometry-based metabolomic approach. This study facilitates the understanding of pranlukast-mediated metabolic changes in Mtb and holds the potential to identify novel therapeutic approaches using metabolic pathways in Mtb.
Collapse
Affiliation(s)
- Soujanya D. Yelamanchi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; (S.D.Y.); (A.M.)
| | - Sumaithangi Thattai Arun Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore 575 018, India; (S.T.A.K.); (T.S.K.P.)
| | - Archita Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; (S.D.Y.); (A.M.)
| | | | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; (S.D.Y.); (A.M.)
| |
Collapse
|
10
|
Synthesis and Antimycobacterial Activity of 3-Phenyl-1 H-indoles. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175148. [PMID: 34500579 PMCID: PMC8433792 DOI: 10.3390/molecules26175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis has been described as a global health crisis since the 1990s, with an estimated 1.4 million deaths in the last year. Herein, a series of 20 1H-indoles were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Furthermore, the top hit compounds were active against multidrug-resistant strains, without cross-resistance with first-line drugs. Exposing HepG2 and Vero cells to the molecules for 72 h showed that one of the evaluated structures was devoid of apparent toxicity. In addition, this 3-phenyl-1H-indole showed no genotoxicity signals. Finally, time-kill and pharmacodynamic model analyses demonstrated that this compound has bactericidal activity at concentrations close to the Minimum Inhibitory Concentration, coupled with a strong time-dependent behavior. To the best of our knowledge, this study describes the activity of 3-phenyl-1H-indole against Mtb for the first time.
Collapse
|
11
|
Volov AN, Volov NA, Platonova YB. Design and synthesis of novel 5-alkynyl pyrimidine nucleosides derivatives: Influence of C-6-substituent on antituberculosis activity. Bioorg Med Chem Lett 2021; 48:128261. [PMID: 34265421 DOI: 10.1016/j.bmcl.2021.128261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
We herein report new 5-substituted uridine derivatives as potent inhibitors of mycobacteria - causative agents of tuberculosis. A series of new 5-alkynyl-substituted uridine derivatives were synthesised via palladium-catalysed Sonogashira cross-coupling reaction of 5-iodo-6-methylpyrimidine base with terminal acetylenes with good yields in DMF at room temperature. It was found that methyl group in C-6 position of pyrimidine ring had no impact on yields of target compounds. All obtained compounds were evaluated for their antimycobacterial activity against Mycobacetrium bovis and Mycobacterium tuberculosis at concentrations of 1-100 µg/ml using MABA test. Synthesized nucleosides showed high antimycobacterial activity against M. bovis and M. Tuberculosis. The MIC50 values of 11 and 13 were similar or close to that of the reference drug rifampicin.
Collapse
Affiliation(s)
- Alexander N Volov
- Department of Chemistry, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation.
| | - Nikolai A Volov
- Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russian Federation
| | - Yana B Platonova
- Department of Chemistry, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny proezd, Chernogolovka, Moscow Region 142432, Russian Federation
| |
Collapse
|
12
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
13
|
Spectroscopic and DFT investigations of 8-hydroxy quinoline-5-sulfonic acid-5-chloro-8-hydroxyquinoline cocrystal. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01579-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Bose P, Harit AK, Das R, Sau S, Iyer AK, Kashaw SK. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Luan Y, Wang N, Li C, Guo X, Lu A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics (Basel) 2020; 9:E787. [PMID: 33171809 PMCID: PMC7695002 DOI: 10.3390/antibiotics9110787] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023] Open
Abstract
Antibiotic abuse is becoming increasingly serious and the potential for harm to human health and the environment has aroused widespread social concern. Aminoglycoside antibiotics (AGs) are broad-spectrum antibiotics that have been widely used in clinical and animal medicine. Consequently, their residues are commonly found in animal-derived food items and the environment. A simple, rapid, and sensitive detection method for on-site screening and detection of AGs is urgently required. In recent years, with the development of molecular detection technology, nucleic acid aptamers have been successfully used as recognition molecules for the identification and detection of AGs in food and the environment. These aptamers have high affinities, selectivities, and specificities, are inexpensive, and can be produced with small batch-to-batch differences. This paper reviews the applications of aptamers for AG detection in colorimetric, fluorescent, chemiluminescent, surface plasmon resonance, and electrochemical sensors for the analysis in food and environmental samples. This study provides useful references for future research.
Collapse
Affiliation(s)
- Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Nan Wang
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Xiaojun Guo
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Anxiang Lu
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| |
Collapse
|
16
|
Jiménez-Juárez R, Cruz-Chávez W, de Jesús-Ramírez N, Castro-Ramírez GI, Uribe-González I, Martínez-Mejía G, Ruiz-Nicolás R, Aguirre-Alvarado C, Castrejón-Jiménez NS, García-Pérez BE. Synthesis and Antimycobacterial Activity of 2,5-Disubstituted and 1,2,5-Trisubstituted Benzimidazoles. Front Chem 2020; 8:433. [PMID: 32656177 PMCID: PMC7325987 DOI: 10.3389/fchem.2020.00433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
The appearance of drug-resistant strains of Mycobacterium tuberculosis and the dramatic increase in infection rates worldwide evidences the urgency of developing new and effective compounds for treating tuberculosis. Benzimidazoles represent one possible source of new compounds given that antimycobacterial activity has already been documented for some derivatives, such as those bearing electron-withdrawing groups. The aim of this study was to synthesize two series of benzimidazoles, di- and trisubstituted derivatives, and evaluate their antimycobacterial activity. Accordingly, 5a and 5b were synthesized from hydroxymoyl halides 3a and 3b, and nitro-substituted o-phenylenediamine 4. Compound 11 was synthesized from an aromatic nitro compound, 4-chloro-1,2-phenylenediamine 9, mixed with 3-nitrobenzaldehyde 10, and bentonite clay. Although the synthesis of 11 has already been reported, its antimycobacterial activity is herein examined for the first time. 1,2,5-trisubstituted benzimidazoles 7a, 7b, and 12 were obtained from N-alkylation of 5a, 5b, and 11. All benzimidazole derivatives were characterized by FT-IR, NMR, and HR-MS, and then screened for their in vitro antimycobacterial effect against the M. tuberculosis H37Rv strain. The N-alkylated molecules (7a, 7b, and 12) generated very limited in vitro inhibition of mycobacterial growth. The benzimidazoles (5a, 5b, and 11) showed in vitro potency against mycobacteria, reflected in minimal inhibitory concentration (MIC) values in the range of 6.25-25 μg/mL. Consequently, only the 2,5-disubstituted benzimidazoles were assessed for biological activity on mouse macrophages infected with M. tuberculosis. A good effect was found for the three compounds. The cytotoxicity assay revealed very low toxicity for all the test compounds against the macrophage cell line. According to the docking study, 2,5-disubstituted benzimidazoles exhibit high affinity for an interdomain cleft that plays a key role in the GTP-dependent polymerization of the filamentous temperature-sensitive Z (FtsZ) protein. The ability of different benzimidazoles to impede FtsZ polymerization is reportedly related to their antimycobacterial activity. On the other hand, the 1,2,5-trisubstituted benzimidazoles docked to the N-terminal of the protein, close to the GTP binding domain, and did not show strong binding energies. Overall, 5a, 5b, and 11 proved to be good candidates for in vivo testing to determine their potential for treating tuberculosis.
Collapse
Affiliation(s)
- Rogelio Jiménez-Juárez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Wendy Cruz-Chávez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nayeli de Jesús-Ramírez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Guadalupe Ivonne Castro-Ramírez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itzel Uribe-González
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Martínez-Mejía
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ricardo Ruiz-Nicolás
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Charmina Aguirre-Alvarado
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS, Mexico City, Mexico.,Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
17
|
Gaikwad VR, Karale UB, Govindarajalu G, Adhikari N, Krishna EV, Krishna VS, Misra S, Sriram D, Sijwali PS, Rode HB. Synthesis and efficacy of pyrvinium-inspired analogs against tuberculosis and malaria pathogens. Bioorg Med Chem Lett 2020; 30:127037. [DOI: 10.1016/j.bmcl.2020.127037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
|
18
|
Ramprasad J, Kumar Sthalam V, Linga Murthy Thampunuri R, Bhukya S, Ummanni R, Balasubramanian S, Pabbaraja S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg Med Chem Lett 2019; 29:126671. [DOI: 10.1016/j.bmcl.2019.126671] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
|