1
|
Liu Q, Akagawa K, Kudo K. Peptide catalyzed regio- and enantioselective ε-alkylation of γ-branched 2,4-dienals via trienamine activation. Chem Commun (Camb) 2025; 61:5467-5470. [PMID: 40094650 DOI: 10.1039/d5cc00805k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The regio- and enantioselective ε-alkylation of γ-branched 2,4-dienals was successfully achieved via trienamine catalysis. N-Terminal prolyl pentapeptide with a turn structure was effective as a catalyst for this transformation.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Kengo Akagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Kazuaki Kudo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
2
|
Yang H, Kang M, Jang S, Baek SY, Kim J, Kim GU, Kim D, Ha J, Kim JS, Jung C, Kim NJ, Cho SY, Shin WH, Lee J, Ko J, Lee A, Keum G, Lee S, Kang T. Discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for treating cancers with microsatellite instability. Bioorg Med Chem 2024; 100:117588. [PMID: 38295487 DOI: 10.1016/j.bmc.2024.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Microsatellite instability (MSI) is a hypermutable condition caused by DNA mismatch repair system defects, contributing to the development of various cancer types. Recent research has identified Werner syndrome ATP-dependent helicase (WRN) as a promising synthetic lethal target for MSI cancers. Herein, we report the first discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for MSI cancer therapy. Initial computational analysis and biological evaluation identified a new scaffold for a WRN inhibitor. Subsequent SAR study led to the discovery of a highly potent WRN inhibitor. Furthermore, we demonstrated that the optimal compound induced DNA damage and apoptotic cell death in MSI cancer cells by inhibiting WRN. This study provides a new pharmacophore for WRN inhibitors, emphasizing their therapeutic potential for MSI cancers.
Collapse
Affiliation(s)
- Hwasun Yang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Miso Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seonyeong Jang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Yeon Baek
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gyeong Un Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dongwoo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsu Ha
- Arontier Co., Ltd., Seoul 06735, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Woong-Hee Shin
- Arontier Co., Ltd., Seoul 06735, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Juyong Lee
- Arontier Co., Ltd., Seoul 06735, Republic of Korea; Research Institute of Pharmaceutical Science, Seoul National University, Seoul 08826, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsu Ko
- Arontier Co., Ltd., Seoul 06735, Republic of Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea.
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Topolska A, Frankowski S, Albrecht Ł. Differentiating Catalysis in the Dearomative [4 + 2]-Cycloaddition Involving Enals and Heteroaromatic Aldehydes. Org Lett 2022; 24:955-959. [PMID: 35040652 PMCID: PMC8805123 DOI: 10.1021/acs.orglett.1c04328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this paper, the
application of differentiating catalysis in
the [4 + 2]-cycloaddition between 2-alkyl-3-formylheteroarenes and
α,β-unsaturated aldehydes is described. Within the developed
approach, the same aminocatalyst is employed for the independent activation
of both starting materials, differentiating their properties via LUMO-lowering
and HOMO-rising principles. By the combination of dearomative dienamine
activation with iminium ion chemistry high enantio- and diastereoselectivity
of the doubly asymmetric process was accomplished. Selected transformations
of products were also demonstrated.
Collapse
Affiliation(s)
- Aleksandra Topolska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Sebastian Frankowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
5
|
Dourado J, Singh S, Davis RL. Exploring the Role of Aminocatalysis in the Dearomatization and Regioselectivity of Heteroaromatic Aldehydes. J Org Chem 2021; 86:11673-11682. [PMID: 34375521 DOI: 10.1021/acs.joc.1c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heteroaromatic aldehydes have recently received a lot of attention as a scaffold for aminocatalytic functionalization as they allow for the construction of remote stereocenters and highly complex heterocyclic compounds. In this paper, we employ computational methods (M06-2X/cc-pVTZ//M06-2X/6-31 + G(d,p) and MP2/cc-pVTZ//M06-2X/6-31 + G(d,p)) to examine the abilities of secondary amines to activate several model heteroaromatic aldehydes by promoting loss of aromaticity and formation of the reactive trienamine intermediate. The hyperhomodesmotic equations used to assess the energy penalty for dearomatization show that the formation of the iminium ion decreases the energy cost for dearomatization, especially when X = O and S. Furthermore, we also investigated the role that the catalyst and heteroatom may have on the orbital coefficients of the various positions of the trienamine intermediary in order to better understand and/or predict the regioselectivity these systems may showcase. Synergistic effects between the catalyst and the heteroatom of the aromatic ring were observed to increase electron density at the most remote positions of several of the model systems studied.
Collapse
Affiliation(s)
- Jorge Dourado
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Simarpreet Singh
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Rebecca L Davis
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
6
|
Skrzyńska A, Frankowski S, Topolska A, Dyguda M, Gao XY, Xu CJ, Chen YC, Albrecht Ł. Enantioselective H-bond-directed vinylogous iminium ion strategy for the functionalization of vinyl-substituted heteroaryl aldehydes. Chem Commun (Camb) 2021; 57:1667-1670. [PMID: 33464255 DOI: 10.1039/d0cc07765h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work the first H-bond-directed vinylogous iminium ion strategy has been developed as a convenient strategy for the γ,δ-functionalization of vinyl-substituted heteroaromatic aldehydes. Their reaction with α-mercaptoketones proceeds in a cascade manner involving 1,6-addition followed by intramolecular aldol reaction. Excellent stereoselectivities have been obtained as a result of the H-bond interactions controlling the outcome of the cyclization step. The application of the strategy for the synthesis of tricyclic compounds bearing furan, tetrahydrothiophene and dihydropyran moieties has also been demonstrated.
Collapse
Affiliation(s)
- Anna Skrzyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Przydacz A, Dyguda M, Topolska A, Skrzyńska A, Xu CJ, Chen YC, Albrecht Ł. Doubly vinylogous and doubly rearomative functionalization of 2-alkyl-3-furfurals. Org Biomol Chem 2020; 18:5816-5821. [PMID: 32678401 DOI: 10.1039/d0ob00788a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The manuscript describes a straightforward functionalization of 2-alkyl-3-furfurals via simple aminocatalytic conjugate addition. The reaction proceeds through the formation of dearomatized dienamine-like intermediate that undergoes 1,6-addition to 4-alkylidene-2,6-dialkylcyclohexa-2,5-dienones. This process can be described as doubly rearomative as it proceeds with the re-formation of both furan and phenyl aromatic moieties. Target products have been obtained in a highly stereoselective manner, providing an interesting example of 2-alkyl-3-furfural functionalization via doubly vinylogous Michael addition. The mechanism of the reaction has been studied by means of computational methods.
Collapse
Affiliation(s)
- Artur Przydacz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | | | | | | | | | | | | |
Collapse
|