1
|
Skaanning MK, Bønnelykke J, Nijenhuis MAD, Samanta A, Smidt JM, Gothelf KV. Self-Assembly of Ultrasmall 3D Architectures of (l)-Acyclic Threoninol Nucleic Acids with High Thermal and Serum Stability. J Am Chem Soc 2024; 146:20141-20146. [PMID: 38982685 DOI: 10.1021/jacs.4c04919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The primary challenge of implementing DNA nanostructures in biomedical applications lies in their vulnerability to nuclease degradation and variations in ionic strength. Furthermore, the size minimization of DNA and RNA nanostructures is limited by the stability of the DNA and RNA duplexes. This study presents a solution to these problems through the use of acyclic (l)-threoninol nucleic acid (aTNA), an artificial acyclic nucleic acid, which offers enhanced resilience under physiological conditions. The high stability of homo aTNA duplexes enables the design of durable nanostructures with dimensions below 5 nm, previously unattainable due to the inherent instability of DNA structures. The assembly of a stable aTNA-based 3D cube and pyramid that involves an i-motif formation is demonstrated. In particular, the cube outperforms its DNA-based counterparts in terms of stability. We furthermore demonstrate the successful attachment of a nanobody to the aTNA cube using the favorable triplex formation of aTNA with ssDNA. The selective in vitro binding capability to human epidermal growth factor receptor 2 is demonstrated. The presented research presents the use of aTNA for the creation of smaller durable nanostructures for future medical applications. It also introduces a new method for attaching payloads to these structures, enhancing their utility in targeted therapies.
Collapse
Affiliation(s)
- Mads K Skaanning
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Jonas Bønnelykke
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Minke A D Nijenhuis
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Jakob Melgaard Smidt
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
López-Tena M, Chen SK, Winssinger N. Supernatural: Artificial Nucleobases and Backbones to Program Hybridization-Based Assemblies and Circuits. Bioconjug Chem 2023; 34:111-123. [PMID: 35856656 DOI: 10.1021/acs.bioconjchem.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The specificity and predictability of hybridization make oligonucleotides a powerful platform to program assemblies and networks with logic-gated responses, an area of research which has grown into a field of its own. While the field has capitalized on the commercial availability of DNA oligomers with its four canonical nucleobases, there are opportunities to extend the capabilities of the hardware with unnatural nucleobases and other backbones. This Topical Review highlights nucleobases that favor hybridizations that are empowering for assemblies and networks as well as two chiral XNAs than enable orthogonal hybridization networks.
Collapse
Affiliation(s)
- Miguel López-Tena
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Si-Kai Chen
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
3
|
Märcher A, Kumar V, Andersen VL, El-Chami K, Nguyen TJD, Skaanning MK, Rudnik-Jansen I, Nielsen JS, Howard KA, Kjems J, Gothelf KV. Functionalized Acyclic (l)-Threoninol Nucleic Acid Four-Way Junction with High Stability In Vitro and In Vivo. Angew Chem Int Ed Engl 2022; 61:e202115275. [PMID: 35352451 PMCID: PMC9324938 DOI: 10.1002/anie.202115275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 01/04/2023]
Abstract
Oligonucleotides are increasingly being used as a programmable connection material to assemble molecules and proteins in well-defined structures. For the application of such assemblies for in vivo diagnostics or therapeutics it is crucial that the oligonucleotides form highly stable, non-toxic, and non-immunogenic structures. Only few oligonucleotide derivatives fulfil all of these requirements. Here we report on the application of acyclic l-threoninol nucleic acid (aTNA) to form a four-way junction (4WJ) that is highly stable and enables facile assembly of components for in vivo treatment and imaging. The aTNA 4WJ is serum-stable, shows no non-targeted uptake or cytotoxicity, and invokes no innate immune response. As a proof of concept, we modify the 4WJ with a cancer-targeting and a serum half-life extension moiety and show the effect of these functionalized 4WJs in vitro and in vivo, respectively.
Collapse
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Veronica L Andersen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kassem El-Chami
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Thuy J D Nguyen
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Mads K Skaanning
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jesper S Nielsen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
4
|
Märcher A, Kumar V, Andersen VL, El‐Chami K, Nguyen TJD, Skaanning MK, Rudnik‐Jansen I, Nielsen JS, Howard KA, Kjems J, Gothelf KV. Functionalized Acyclic (
l
)‐Threoninol Nucleic Acid Four‐Way Junction with High Stability In Vitro and In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Veronica L. Andersen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kassem El‐Chami
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Thuy J. D. Nguyen
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Mads K. Skaanning
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Imke Rudnik‐Jansen
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Jesper S. Nielsen
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
5
|
Asanuma H, Kamiya Y, Kashida H, Murayama K. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chem Commun (Camb) 2022; 58:3993-4004. [DOI: 10.1039/d1cc05868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA and RNA have significance as a genetic materials, therapeutic potential, and supramolecular properties. Advances in nucleic acid chemistry have enabled large-scale synthesis of DNA and RNA oligonucleotides and oligomers...
Collapse
|
6
|
Murayama K, Asanuma H. Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers. Chembiochem 2021; 22:2507-2515. [PMID: 33998765 DOI: 10.1002/cbic.202100184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Xeno nucleic acids (XNAs) are analogues of DNA and RNA that have a non-ribose artificial scaffold. XNAs are possible prebiotic genetic carriers as well as alternative genetic systems in artificial life. In addition, XNA oligomers can be used as biological tools. Acyclic XNAs, which do not have cyclic scaffolds, are attractive due to facile their synthesis and remarkably high nuclease resistance. To maximize the performance of XNAs, a negatively charged backbone is preferable to provide sufficient water solubility; however, acyclic XNAs containing polyanionic backbones suffer from high entropy cost upon duplex formation, because of the high flexibility of the acyclic nature. Herein, we review the relationships between the structure and duplex hybridization properties of various acyclic XNA oligomers with polyanion backbones.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
7
|
Murayama K, Okita H, Kuriki T, Asanuma H. Nonenzymatic polymerase-like template-directed synthesis of acyclic L-threoninol nucleic acid. Nat Commun 2021; 12:804. [PMID: 33547322 PMCID: PMC7864931 DOI: 10.1038/s41467-021-21128-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Evolution of xeno nucleic acid (XNA) world essentially requires template-directed synthesis of XNA polymers. In this study, we demonstrate template-directed synthesis of an acyclic XNA, acyclic L-threoninol nucleic acid (L-aTNA), via chemical ligation mediated by N-cyanoimidazole. The ligation of an L-aTNA fragment on an L-aTNA template is significantly faster and occurs in considerably higher yield than DNA ligation. Both L-aTNA ligation on a DNA template and DNA ligation on an L-aTNA template are also observed. High efficiency ligation of trimer L-aTNA fragments to a template-bound primer is achieved. Furthermore, a pseudo primer extension reaction is demonstrated using a pool of random L-aTNA trimers as substrates. To the best of our knowledge, this is the first example of polymerase-like primer extension of XNA with all four nucleobases, generating phosphodiester bonding without any special modification. This technique paves the way for a genetic system of the L-aTNA world.
Collapse
Affiliation(s)
- Keiji Murayama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Hikari Okita
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takumi Kuriki
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|