1
|
Casasús P, Mestre J, Radłowska R, Bernús M, Boutureira O. Electrophilic glycoluril-based reagents for atom-economic thiocyanation and selenocyanation of (hetero)arenes. Org Biomol Chem 2025; 23:4463-4470. [PMID: 40223445 DOI: 10.1039/d5ob00536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Two electrophilic glycoluril-based N-XCN reagents (X = S, Se) were developed for introducing SCN/SeCN groups into aromatic substrates, including the late-stage modification of bioactive molecules. Their application produces minimal waste, enables simple purification, and offers potential for reagent regeneration. Additionally, their compatibility with green solvents and flow technology was demonstrated. The sustainability of the process was evaluated using green metrics and Ecoscale values, emphasizing the complementary roles of the reagents and solvent recovery in enhancing atom economy and reducing waste.
Collapse
Affiliation(s)
- Paula Casasús
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Roksana Radłowska
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Miguel Bernús
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira I Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| |
Collapse
|
2
|
Mukherjee A, Samanta A, Maity S. Photo-Thiocyanoamination of π- and σ-Bonds: Reagent Development and Synthetic Applications. J Org Chem 2025. [PMID: 40298390 DOI: 10.1021/acs.joc.5c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
1,2-Thiocyanoamines make up a class of important structural motifs that are found in a number of bioactive molecules and precursors to many more. Despite their synthetic significance, expedient access to this difunctionalization is rare. Herein, the development of a thiocyanoimination reagent is disclosed, taking advantage of photomediated energy transfer phenomena for the facile thiocyanoimination of alkenes. The strategy was found to be viable for σ-bonds as well, providing a generalized strategy for accessing small molecules infused with amine and -SCN.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad,Dhanbad, Jharkhand 826004, India
| | - Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad,Dhanbad, Jharkhand 826004, India
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad,Dhanbad, Jharkhand 826004, India
| |
Collapse
|
3
|
Li M, Zhang Y, Zhao Y, Zhu J, Cheng Y, Li W, Wu D. Selective C(sp 2)-H bond radical thiocyanation of cyclic α,β-unsaturated ketones. Org Biomol Chem 2025; 23:3107-3111. [PMID: 40035465 DOI: 10.1039/d5ob00065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study presents an AIBN catalyzed radical thiocyanation reaction, which efficiently enables the thiocyanation of C(sp2)-H bonds in cyclic conjugated unsaturated alkenes, such as uracil and quinolinone derivatives. The method demonstrates excellent substrate versatility, successfully synthesizing 5-thiocyanato derivatives of uracil and quinolinone compounds. It also shows remarkable tolerance to a wide range of functional groups, with yields ranging from 41% to 99%. Moreover, the reaction can be extended to other halogenation-based functionalization reactions, highlighting its practical applicability.
Collapse
Affiliation(s)
- Mengyi Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| | - Yu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| | - Yu Zhao
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| | - Jingfu Zhu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| | - Yu Cheng
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| | - Di Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Procience, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
4
|
Huang C, Xie ZZ, Gao J, Xiang M, Xiang HY, Chen K, Yang H. Photosensitized Imino-Thiocyanation of Alkenes. Org Lett 2025; 27:1979-1983. [PMID: 39960045 DOI: 10.1021/acs.orglett.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A metal-free photosensitized 1,2-imino-thiocyanation of olefins has been established by using the easily accessible bifunctional reagent S-cyano-N-(diphenylmethylene) thiohydroxylamine. A wide range of olefins were successfully transformed into the corresponding β-iminothiocyanates in moderate to high yields. This protocol stands out for its metal-free nature, broad substrate compatibility, and high atom and step economy, providing an effective strategy for assembling β-amino thiocyanate-containing scaffolds.
Collapse
Affiliation(s)
- Cong Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Mei Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
5
|
Mondal K, Paul S, Halder P, Talukdar V, Das P. Iodine-Catalyzed Regioselective C-3 Chalcogenation of 7-Azaindoles: Access to Benzothiophene-Fused 7-Azaindole Analogs. J Org Chem 2024; 89:17042-17058. [PMID: 39527407 DOI: 10.1021/acs.joc.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An iodine-catalyzed method has been reported for efficient regioselective C-3 sulfenylation, selenylation, thiocyanation, and selenocyanation of NH-free 7-azaindoles using thiophenols, diselenides, potassium thiocyanates, and selenocyanates, respectively. This approach showcases high efficiency and remarkable versatility, facilitating the synthesis of diverse chalcogenated 7-azaindoles. Additionally, the sulfenylated derivatives have been further diversified to generate a new array of benzothiophene-fused 7-azaindole cores of pharmaceutical interest. The synthetic flexibility of this protocol has been highlighted through the gram-scale synthesis of sulfonylated 7-azaindole-based bioactive 5-HT6 receptor agonists.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Siddhartha Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
6
|
Wang Q, Shao C, Hua R, Yin H, Chen FX. Me 3SiBr-promoted cascade electrophilic thiocyanation/cyclization of ortho-alkynylanilines to synthesize indole derivatives. Org Biomol Chem 2024; 22:4031-4035. [PMID: 38690868 DOI: 10.1039/d4ob00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.
Collapse
Affiliation(s)
- Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
7
|
Patel M, Kumar N, Bhukya H, Dholakiya BZ, Naveen T. Copper-catalyzed ortho-thiocyanation of aromatic amines. Org Biomol Chem 2024; 22:3386-3390. [PMID: 38619009 DOI: 10.1039/d4ob00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A copper-catalyzed direct ortho-Csp2-H thiocyanation of free anilines has been developed. This method employs stable and non-toxic ammonium thiocyanate as a thiocyanation source, and tert-butyl hydroperoxide as the oxidant, enabling the synthesis of ortho-thiocyanated anilines with good yields and broad substrate tolerance. Hitherto, no reports have been found in the literature for the ortho-thiocyanation of aromatic amines, making this reaction an important breakthrough in synthetic organic chemistry.
Collapse
Affiliation(s)
- Monak Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat - 395 007, India.
| | - Nitish Kumar
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh - 517 507, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh - 517 507, India
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat - 395 007, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat - 395 007, India.
| |
Collapse
|
8
|
Karmaker PG, Yang X. Recent Advancement on the Indirect or Combined Alternative Thiocyanate Sources for the Construction of S-CN Bonds. CHEM REC 2024; 24:e202300312. [PMID: 38085121 DOI: 10.1002/tcr.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Indexed: 03/10/2024]
Abstract
The process of thiocyanation is a notable chemical conversion owing to the extensive range of applications associated with thiocyanate compounds in the field of organic chemistry. In past centuries, the thiocyanation reaction incorporated metal thiocyanates or thiocyanate salts as sources of thiocyanate, which are environmentally detrimental and undesirable. In recent literature, there have been numerous instances where combined or indirect alternative sources of thiocyanate have been employed as agents for thiocyanation, showcasing their noteworthy applications. The present literature review focuses on elucidating the ramifications associated with the utilization of indirect or combined alternative sources of thiocyanate in various thiocyanation reactions.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
9
|
Zhang D, Yang Q, Cai J, Ni C, Wang Q, Wang Q, Yang J, Geng R, Fang Z. Synthesis of 3-Thiocyanobenzothiophene via Difunctionalization of Active Alkyne Promoted by Electrochemical-Oxidation. Chemistry 2023; 29:e202203306. [PMID: 36453091 DOI: 10.1002/chem.202203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A novel and green method for the synthesis of 3-thiocyanatobenzothiophenes via electrochemical-oxidation promoted difunctionalization of active alkyne has been developed. In this protocol, inexpensive and easily available potassium thiocyanate was chosen as the thiocyanation reagent, 2-alkynylthioanisoles as the substrates, a variety of 3-thiocyanatobenzothiophenes were obtained in moderate to good yields under oxidant- and catalyst-free conditions. Moreover, the continuous flow system has good applicability for this transformation, the use of continuous flow system has overcome the disadvantage of low efficiency in traditional electrochemical amplification, and realized the stable and excellent yields of target products in the scale-up reactions.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qijun Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinlin Cai
- School of History and Public Administration, Yancheng Teachers University, 224007, Yancheng, China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingming Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., 211816, Nanjing, P. R. China
| |
Collapse
|
10
|
Gao Y, Hua R, Yin H, Chen FX. Synthesis of thiocyanato-containing phenanthrenes and dihydronaphthalenes via Lewis acid-activated tandem electrophilic thiocyanation/carbocyclization of alkynes. Org Biomol Chem 2023; 21:2417-2422. [PMID: 36857671 DOI: 10.1039/d3ob00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A tandem electrophilic thiocyanation and cyclization of arene-alkynes has been developed under mild conditions, affording thiocyanato-substituted phenanthrenes, dihydronaphthalenes, 2H-chromenes and dihydroquinolines in moderate to excellent yields. This reaction provides an efficient protocol for the construction of C-SCN and C-C bonds in one step. In this transformation, N-thiocyanato reagent serves as a convenient precursor to transfer SCN+ in the presence of trimethylchlorosilane, and the cyclization exhibited exclusive 6-endo-dig selectivity. Finally, a gram scale reaction and further derivatizations highlight the utility of this synthetic strategy.
Collapse
Affiliation(s)
- Yong Gao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China. .,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China. .,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
11
|
Exogenous photocatalyst- and metal-free photoinduced C-3 thiocyanation of indoles using O2 as the oxidant. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
12
|
Efficient thiocyanation of phenols and anilines in the CeBr3 / H2O2 system. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Mulina OM, Bityukov OV, Vil’ VA, Terent’ev AO. Photo- and Electrochemically Initiated Thiocyanation Reactions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Yuan Y, Liu Y, Wang H, Zhang X. Fe(III)‐Mediated
para
‐Selective Nucleophilic Thiocyanation and Oxidation Reactions, Access to Thiocyanated Amidophenols and Amidoquinones. ChemistrySelect 2022. [DOI: 10.1002/slct.202203719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - Yibo Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - HongLing Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - Xiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| |
Collapse
|
15
|
Weng Z, Wang L. Convenient thiocyanation of indoles in CeBr3/H2O2 system. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Ye AH, Song XF, Chen ZM. Electrophilic Thiocyanation of Tryptamine Derivatives: Divergent Synthesis of SCN-Containing Indole Compounds. Chem Asian J 2022; 17:e202200802. [PMID: 36039929 DOI: 10.1002/asia.202200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Indexed: 11/07/2022]
Abstract
A tandem dearomative electrophilic thiocyanation/cyclization/acylation of indoles was developed for the first time, which is enabled by acyl chloride. A variety of 3-SCN pyrroloindolines were obtained with moderate to excellent yields. Interestingly, replacement of acyl chloride with methanesulfonic acid, 2-SCN tryptamines were obtained using the same starting substrates and reagents. Furthermore, catalytic enantioselective manner of thiocyanation/cyclization/acylation reaction was also studied. An enantiomer self-disproportionation effect of 3-SCN pyrroloindolines was discovered. A series of chiral 3-SCN pyrroloindolines were obtained with high enantioselectivities.
Collapse
Affiliation(s)
- Ai-Hui Ye
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Xu-Feng Song
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhi-Min Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA
| |
Collapse
|
17
|
Chen H, Shi X, Liu X, Zhao L. Recent progress of direct thiocyanation reactions. Org Biomol Chem 2022; 20:6508-6527. [PMID: 35942781 DOI: 10.1039/d2ob01018f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiocyanates are common in natural products, synthetic drugs and bioactive molecules. Many thiocyanate derivatives show excellent antibacterial, antiparasitic and anticancer activities. Thiocyanation can introduce SCN groups into parent molecules for constructing SCN-containing small organic molecules. Among them, the direct introduction method mainly includes nucleophilic reaction, electrophilic reaction and free radical reaction, which can simply and quickly introduce SCN groups at the target sites to construct thiocyanates, and has broad application prospects. In this review, we summarize the research progress of direct thiocyanation in recent years.
Collapse
Affiliation(s)
- Haixin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
18
|
Abbasi M, Nowrouzi N, Sedaghat H. Efficient thiocyanation of aromatic compounds using NH4SCN, DMSO and H2SO4. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Duan Y, Liang K, Yin H, Chen FX. Dithiocyanation of Alkynes with N‐Thiocyanato‐dibenzenesulfonimide and Ammonium Thiocyanate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongjie Duan
- Beijing Institute of Technology School of Chemistry and Chemical Engineering No.8 liangxiang East Road, Fangshan District 102488 beijing CHINA
| | - Kun Liang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hongquan Yin
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Fu-Xue Chen
- Beijing Institute of Technology School of chemical Engineering No5 south zhongguancun street, Haidian 100081 Beijing CHINA
| |
Collapse
|
20
|
Bityukov OV, Kirillov AS, Serdyuchenko PY, Kuznetsova MA, Demidova VN, Vil' VA, Terent'ev AO. Electrochemical thiocyanation of barbituric acids. Org Biomol Chem 2022; 20:3629-3636. [PMID: 35420113 DOI: 10.1039/d2ob00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical thiocyanation of barbituric acids with NH4SCN was disclosed in an undivided cell under constant current conditions. The electrosynthesis is the most efficient at a record high current density (janode ≈50-70 mA cm-2). NH4SCN has a dual role as the source of the SCN group and as the electrolyte. Electrochemical thiocyanation of barbituric acids starts with the generation of (SCN)2 from the thiocyanate anion. The addition of thiocyanogen to the double bond of the enol tautomer of barbituric acid gives thiocyanated barbituric acid. A variety of thiocyanated barbituric acids bearing different functional groups were obtained in 18-95% yields and were shown to exhibit promising antifungal activity.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Maria A Kuznetsova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Valentina N Demidova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
21
|
Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen FX. An electrophilic thiocyanation/ipso-cyclization leading to spirocyclohexadienones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Ye AH, Li ZH, Ding TM, Ke H, Chen ZM. Phosphoric Acid Catalyzed Electrophilic Thiocyanation of Indoles: Access to SCN-Containing Aryl-Indole Compounds. Chem Asian J 2022; 17:e202200256. [PMID: 35384332 DOI: 10.1002/asia.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
A phosphoric acid catalyzed electrophilic thiocyanation of 3-aryl indoles, which provides an efficient and modular approach to SCN-containing 3-aryl indole compounds, was developed for the first time. A variety of 2-SCN-3-aryl indoles were obtained with moderate to excellent yields. Furthermore, catalytic asymmetric manner of this reaction was also studied. Using chiral phosphoric acid as the catalyst, axially chiral SCN-containing 3-aryl indoles were obtained in moderate to good yields with moderate enantioselectivity.
Collapse
Affiliation(s)
- Ai-Hui Ye
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zi-Hao Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Tong-Mei Ding
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Ke
- Pingxiang University, Engineering Technology Research Center for Environmental Protection Materials, CHINA
| | - Zhi-Min Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA
| |
Collapse
|
23
|
Shao C, He Y, Yin H, Chen FX. Me3SiCl‐Catalyzed Electrophilic Thiocyanation/Cyclization of Alkynylbenzoates to Synthesize 4‐Thiocyanatoisocourmarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chukai Shao
- Beijing Institute of Technology School of Chemistry No. 8 Liangxiang East Road, Fangshan District, Beijing 102488 (P. R. China) 102488 Beijing CHINA
| | - Ying He
- Beijing Institute of Technology School of Chemistry CHINA
| | - Hongquan Yin
- Beijing Institute of Technology School of Chemistry CHINA
| | - Fu-Xue Chen
- Beijing Institute of Technology School of chemical Engineering No5 south zhongguancun street, Haidian 100081 Beijing CHINA
| |
Collapse
|
24
|
Karmaker PG, Alam MA, Huo F. Recent advances in photochemical and electrochemically induced thiocyanation: a greener approach for SCN-containing compound formation. RSC Adv 2022; 12:6214-6233. [PMID: 35424569 PMCID: PMC8981651 DOI: 10.1039/d1ra09060g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Techniques utilizing photo- and electrochemically induced reactions have been developed to accelerate organic processes. These techniques use light or electrical energy (electron transfer) as a direct energy source without using an initiator or reagent. Thiocyanates are found in biologically active and pharmacological compounds and can be converted into various functional groups. It is one of the most prominent organic scaffolds. Significant development in photo- and electro-chemically induced thiocyanation procedures has been made in recent years for the conception of carbon-sulfur bonds and synthesis of pharmaceutically important molecules. This review discusses different photo- and electro-chemically driven thiocyanation C(sp3)-SCN, C(sp2)-SCN, and C(sp)-SCN bond conception processes that may be useful to green organothiocyanate synthesis. We focus on the synthetic and mechanistic characteristics of organic photo- and electrochemically accelerated C-SCN bond formation thiocyanation reactions to highlight major advances in this novel green and sustainable research field.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 Henan China
| | - Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| |
Collapse
|
25
|
Huang Q, Peng X, Li H, He H, Liu L. Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules 2022; 27:772. [PMID: 35164036 PMCID: PMC8839487 DOI: 10.3390/molecules27030772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
An efficient and general method for the synthesis of 3-sulfenylindoles and 3-selenylindoles employing visible-light irradiation with graphene oxide as a promoter at room temperature has been achieved. The reaction features are high yields, simple operation, metal-free and iodine-free conditions, an easy-to-handle oxidant, and gram-scalable synthesis. This simple protocol allows one to access a wide range of 3-arylthioindoles, 3-arylselenylindoles, and even 3-thiocyanatoindoles with good to excellent yields.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Hong Li
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| | - Haiping He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Science of Gannan Medical University, Ganzhou 341000, China;
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Q.H.); (H.L.)
| |
Collapse
|
26
|
Gao M, Vuagnat M, Jubault P, Besset T. N
‐Thiocyanato‐2,10‐camphorsultam Derivatives: Design and Applications of Original Electrophilic Thiocyanating Reagents. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mélissa Gao
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Martin Vuagnat
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Philippe Jubault
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
27
|
Zhang Y, Gao H, Guo J, Zhang H, Yao X. Selective electrochemical para-thiocyanation of aromatic amines under metal-, oxidant- and exogenous-electrolyte-free conditions. Chem Commun (Camb) 2021; 57:13166-13169. [PMID: 34812816 DOI: 10.1039/d1cc05208j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An electrochemical oxidative para-C-H-thiocyanation of aromatic amines has been developed to construct thiocyanato aromatic compounds under metal-, oxidant-, and exogenous-electrolyte-free conditions in an undivided cell. The transformation is compatible with a range of primary, secondary, and tertiary amines and shows good functional group tolerance. This approach provides an economical and environmentally benign way for para-thiocyanation of aromatic amines.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Huanjie Gao
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Jiabao Guo
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Hao Zhang
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Xiaoquan Yao
- Department of Applied Chemistry, School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| |
Collapse
|
28
|
Fu Z, Gao Y, Yin H, Chen FX. Electrophilic Thiocyanato Reagent Assisted Oxa-Michael/Thiocyanation of α,β-Unsaturated Ketones. J Org Chem 2021; 86:17418-17427. [PMID: 34783557 DOI: 10.1021/acs.joc.1c01993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A route for thiocyanation-functionalization of the electron-deficient C═C double bond was developed. Regioselective thiocyanation-etherification of α,β-unsaturated ketones was achieved. The desired products were obtained in moderate to high yields under mild conditions. It was suggested that the nucleophile was activated by the electrophilic thiocyanato reagent, and difunctionalization was achieved through a 1,4-addition/thiocyanation pathway.
Collapse
Affiliation(s)
- Zhenda Fu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Yong Gao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| |
Collapse
|
29
|
Li JC, Gao WX, Liu MC, Zhou YB, Wu HY. α-Selective C(sp 3)-H Thio/Selenocyanation of Ketones with Elemental Chalcogen. J Org Chem 2021; 86:17294-17306. [PMID: 34784197 DOI: 10.1021/acs.joc.1c02431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile method is disclosed for the synthesis of α-thio/selenocyanato ketones through regioselective C-H thio/selenocyanation of ketones. The advantages include the use of easily available starting materials, high efficiency, simple operation, and easy scale-up. Control experiments provide evidence that the reaction proceeded via a radical way, while kinetic isotope effect experiments reveal that the cleavage of the C-H bond serves as the rate-limiting step.
Collapse
Affiliation(s)
- Jin-Cheng Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
30
|
Gao Y, Fu Z, Wu D, Yin H, Chen F. Organocatalyzed Asymmetric Tandem Intramolecular oxa‐Michael Addition/Electrophilic Thiocyanation: Synthesis of Chiral
α‐
Thiocyanato Flavanones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Gao
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| |
Collapse
|
31
|
Taily IM, Saha D, Banerjee P. Arylcyclopropane yet in its infancy: the challenges and recent advances in its functionalization. Org Biomol Chem 2021; 19:8627-8645. [PMID: 34549770 DOI: 10.1039/d1ob01432c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electronically unbiased arylcyclopropane functionalization has always been a challenge to organic chemists, and the emergence of donor-acceptor cyclopropanes (DACs) has not only vehemently overshadowed them but still dominates the cyclopropane chemistry. Unlike DACs, the absence of pre-installed functional groups makes it harder for them to activate and participate in a reaction. The field has witnessed considerably slow progress since its inception due to the inherent challenges. There are only a few strategies available to open arylcyclopropanes. Therefore, this work is still in its infancy stage in spite of these materials being one of the earliest known type of cyclopropanes. This review manifests the history, endeavors, and achievements alongside the associated challenges, opportunities, and the need for concerted efforts to accomplish the long-awaited golden age of arylcyclopropanes.
Collapse
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Debarshi Saha
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
32
|
Wu D, Duan Y, Liang K, Yin H, Chen FX. AIBN-initiated direct thiocyanation of benzylic sp 3 C-H with N-thiocyanatosaccharin. Chem Commun (Camb) 2021; 57:9938-9941. [PMID: 34498624 DOI: 10.1039/d1cc04302a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Direct thiocyanations of benzylic compounds have been implemented. Here, a new strategy, involving a free radical reaction pathway initiated by AIBN, was used to construct the benzylic sp3 C-SCN bond. In this way, the disadvantage of other strategies involving introducing leaving groups in advance to synthesize benzyl thiocyanate compounds was overcome. The currently developed protocol also involved the use of readily available raw materials and resulted in high product yields (up to 100%), both being great advantages for synthesizing benzyl thiocyanates.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Yongjie Duan
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Kun Liang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| |
Collapse
|
33
|
Li C, Long P, Fu Z, Wu D, Chen F, Yin H. Thiocyanation/Cyclization of γ‐hydroxy Olefins to Access Thiocyanato‐Containing Oxygen Heterocyclic Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chengcheng Li
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Pingliang Long
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Ministry of Industry and Information Technology Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District, Beijing 102488 P. R. China
| |
Collapse
|
34
|
Gao M, Vuagnat M, Chen MY, Pannecoucke X, Jubault P, Besset T. Design and Use of Electrophilic Thiocyanating and Selenocyanating Reagents: An Interesting Trend for the Construction of SCN- and SeCN-Containing Compounds. Chemistry 2021; 27:6145-6160. [PMID: 33283371 DOI: 10.1002/chem.202004974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/01/2023]
Abstract
Organothiocyanate and organoselenocyanate compounds are of paramount importance in organic chemistry as they are key intermediates to access sulfur- and selenium-containing compounds. Therefore, among the different synthetic pathways to get SCN- and SeCN-containing molecules, original methodologies using electrophilic reagents have recently been explored. This Minireview will showcase the recent advances that have been made. In particular, the design of several electrophilic sources and their applications for the thiocyanation and the selenocyanation of various classes of compounds will be highlighted and discussed.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Martin Vuagnat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Mu-Yi Chen
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
35
|
Wu H, Shao C, Wu D, Jiang L, Yin H, Chen FX. Atom-Economical Thiocyanation-Amination of Alkynes with N-Thiocyanato-Dibenzenesulfonimide. J Org Chem 2021; 86:5327-5335. [PMID: 33703903 DOI: 10.1021/acs.joc.0c02780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective protocol for intermolecular thiocyanation-amination of alkynes by N-thiocyano-dibenzenesulfonimide (NTSI) as the SCN and nitrogen sources has been developed. A C-S bond and C-N bond are simultaneously constructed in only one step. The reaction under simple mild conditions features a broad substrate scope, atom economy, high yields (up to 94%), and excellent functional group tolerance.
Collapse
Affiliation(s)
- Haopeng Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Liang Jiang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, No. 94 Wei Jin Road, Nankai District, Tianjin, 300071, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
36
|
Hu G, Li P, Zhou Z, Yang F, Xu S, Fan H, Zhao X, Zhang X. NBS-assisted palladium-catalyzed bromination/cross-coupling reaction of 2-alkynyl arylazides with KSCN: an efficient method to synthesize 3-thiocyanindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05894g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient NBS-assisted palladium-catalyzed bromination/cross-coupling synthesis of 3-thiocyanindoles from 2-alkynyl arylazides with KSCN has been described.
Collapse
Affiliation(s)
- Guiwen Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Ping Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Zhiqiang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fan Yang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Shijie Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Hui Fan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xuechun Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xiaoxiang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
37
|
Wu D, Li C, Duan Y, Yin H, Chen FX. One-pot synthesis of 2-chloro-2-thio/selenocyanato ketones from β-keto acids. Org Chem Front 2021. [DOI: 10.1039/d1qo00405k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chlorothiocyanato difunctionalization reaction has been achieved, and a variety of α-chlorothio/selenocyanato difunctional ketones are synthesized through one-pot strategy from β-keto acids.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Chengcheng Li
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Yongjie Duan
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering
- Beijing Institute of Technology (Liangxiang Campus)
- Beijing 102488
- China
| |
Collapse
|
38
|
Divyavani C, Padmaja P, Ugale VG, Reddy PN. A Review on Thiocyanation of Indoles. Curr Org Synth 2020; 18:233-247. [PMID: 33272188 DOI: 10.2174/1570179417999201203211855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The thiocyanation of indoles is a direct way for carbon-sulfur bond formation to access 3-thiocyanato-indoles. 3-thiocyanato-indoles exhibit potent biological and pharmacological activities and also serve as building blocks to synthesize many biologically active sulfur-containing indole derivatives. OBJECTIVE The aim of this review is to highlight different approaches for the thiocyanation of indoles focusing on its scope and mechanism. CONCLUSION In this review, we have summarized various methods for the thiocyanation of indoles. Selection of new methods for the preparation of 3-thiocyanato-indoles will be done. The mechanistic aspects and significance of the methods are also briefly discussed.
Collapse
Affiliation(s)
- Chitteti Divyavani
- Department of Chemistry, Sri Padmavathi Women's Degree & PG College, Tirupati, Andhra Pradesh, India
| | - Pannala Padmaja
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Vinod G Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Maharashtra, India
| | | |
Collapse
|
39
|
Yi B, Wen X, Yi Z, Xie Y, Wang Q, Tan JP. Visible-light-enabled regioselective aerobic oxidative C(sp2)-H thiocyanation of aromatic compounds by Eosin-Y photocatalyst. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Wang X, Wang L, Yang S, Zhang L, Li Y, Zhang Q. Copper-catalyzed 1,3-aminothiocyanation of arylcyclopropanes. Org Biomol Chem 2020; 18:4932-4935. [PMID: 32582895 DOI: 10.1039/d0ob01060j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed 1,3-aminothiocyanation of arylcyclopropanes with N-fluorobenzenesulfonimide (NFSI) and trimethylsilyl isothiocyanate (TMSNCS) has been developed for the first time, efficiently synthesizing a series of γ-aminothiocyanate derivatives in moderate to excellent yields from readily available substrates under mild conditions. The practicability of the reaction was demonstrated by gram-scale preparation. Furthermore, the easily prepared γ-aminothiocyanate derivatives were verified to be versatile building blocks.
Collapse
Affiliation(s)
- Xiaomin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Shengbiao Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Linli Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yan Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
41
|
Song XF, Ye AH, Xie YY, Dong JW, Chen C, Zhang Y, Chen ZM. Lewis-Acid-Mediated Thiocyano Semipinacol Rearrangement of Allylic Alcohols for Construction of α-Quaternary Center β-Thiocyano Carbonyls. Org Lett 2019; 21:9550-9554. [PMID: 31742419 DOI: 10.1021/acs.orglett.9b03722] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An electrophilic thiocyano semipinacol rearrangement of allylic alcohols has been achieved for the first time by using N-thiocyano-dibenzenesulfonimide (NTSI). This approach provides a direct, simple, and efficient strategy for the formation of thiocyano carbonyl compounds with moderate to excellent yields. Meanwhile, an all-carbon quaternary center was rapidly constructed. In addition, an asymmetric version of this tandem reaction was preliminarily investigated.
Collapse
Affiliation(s)
- Xu-Feng Song
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Jia-Wei Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
42
|
Wei W, Liao L, Qin T, Zhao X. Access to Saturated Thiocyano-Containing Azaheterocycles via Selenide-Catalyzed Regio- and Stereoselective Thiocyanoaminocyclization of Alkenes. Org Lett 2019; 21:7846-7850. [DOI: 10.1021/acs.orglett.9b02834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Wei
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Tian Qin
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|