1
|
de Oliveira AG, Wang MF, Carmona RC, Lustosa DM, Gorbatov SA, Correia CRD. Enantioselective synthesis of β-aryl-γ-lactam derivatives via Heck-Matsuda desymmetrization of N-protected 2,5-dihydro-1 H-pyrroles. Beilstein J Org Chem 2024; 20:940-949. [PMID: 38711594 PMCID: PMC11070958 DOI: 10.3762/bjoc.20.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
We report herein an enantioselective palladium-catalyzed Heck-Matsuda reaction for the desymmetrization of N-protected 2,5-dihydro-1H-pyrroles with aryldiazonium salts, using the chiral N,N-ligand (S)-PyraBox. This strategy has allowed straightforward access to a diversity of 4-aryl-γ-lactams via Heck arylation followed by a sequential Jones oxidation. The overall method displays a broad scope and good enantioselectivity, favoring the (R) enantiomer. The applicability of the protocol is highlighted by the efficient enantioselective syntheses of the selective phosphodiesterase-4-inhibitor rolipram and the commercial drug baclofen as hydrochloride.
Collapse
Affiliation(s)
- Arnaldo G de Oliveira
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Martí F Wang
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Rafaela C Carmona
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Danilo M Lustosa
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Sergei A Gorbatov
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Carlos R D Correia
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Singh B, Kumar M, Goswami G, Verma I, Ghorai MK. Ring-Opening Cyclization (ROC) of Aziridines with Propargyl Alcohols: Synthesis of 3,4-Dihydro-2 H-1,4-oxazines. J Org Chem 2023; 88:4504-4518. [PMID: 36972376 DOI: 10.1021/acs.joc.2c03093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Activated aziridines react with propargyl alcohols in the presence of Zn(OTf)2 as the Lewis acid catalyst following an SN2-type ring-opening mechanism to furnish the corresponding amino ether derivatives. Those amino ethers further undergo intramolecular hydroamination via 6-exo-dig cyclization in the presence of Zn(OTf)2 as the catalyst and tetrabutylammonium triflate salt as an additive under one-pot two-step reaction conditions. However, for nonracemic examples, ring-opening and cyclization steps were conducted under two-pot conditions. The reaction works well without any additional solvents. The final 3,4-dihydro-2H-1,4-oxazine products were obtained with 13 to 84% yield and 78 to 98% enantiomeric excess (for nonracemic examples).
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Gaurav Goswami
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
3
|
Benaglia M, Greco SJ, Westphal R, Venturini Filho E, Medici F. Stereoselective Domino Reactions in the Synthesis of Spiro Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1771-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThis review summarizes the latest developments in asymmetric domino reactions, with the emphasis on the preparation of spiro compounds. Discussions on the stereoselectivity of the transformations, the reaction mechanisms, the rationalization of the stereochemical outcome, and the applications of domino reactions to the synthesis of biologically active molecules and natural products are included when appropriate.1 Introduction2 Asymmetric Domino Reactions2.1 Domino Reactions Initiated by Michael Reactions2.2 Domino Reactions Initiated by Mannich Reactions2.3 Domino Reactions Initiated by Knoevenagel Reactions2.4 Domino Reactions Initiated by Cycloaddition Reactions2.5 Domino Reactions Initiated by Metal Insertion2.6 Other Mechanisms3 Conclusion
Collapse
|
4
|
Liu SJ, Mao Q, Zhan G, Qin R, Chen BH, Xue J, Luo ML, Zhao Q, Han B. Stereoselective synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactam through the organocatalytic cascade reaction of 3-((2,2,2-trifluoroethyl)amino)indolin-2-one. Org Biomol Chem 2021; 19:467-475. [PMID: 33347527 DOI: 10.1039/d0ob02166k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly designed 3-((2,2,2-trifluoroethyl)amino)indolin-2-ones were used for the facile synthesis of chiral fluoroalkyl-containing 3,2'-spirooxindole γ-lactam products. The secondary amine-catalysed Michael/hemiaminalization cascade reaction of 3-((2,2,2-trifluoroethyl)amino)indolin-2-one with α,β-unsaturated aldehydes followed by oxidation can easily produce the desired products in high yields (up to 86%) with excellent enantioselectivities (up to 99% ee) and diastereoselectivities (up to >95 : 5 dr).
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing Mao
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu Zhan
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Rui Qin
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ben-Hong Chen
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Xue
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Meng-Lan Luo
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qian Zhao
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Alves AJS, Alves NG, Soares MIL, Pinho e Melo TMVD. Strategies and methodologies for the construction of spiro-γ-lactams: an update. Org Chem Front 2021. [DOI: 10.1039/d0qo01564d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an insight into the most recent synthetic methodologies towards spiro-γ-lactams, a class of compounds that are present in a wide range of synthetic bioactive and naturally occurring molecules.
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Nuno G. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Maria I. L. Soares
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
6
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|