1
|
Gharpure SJ, Pal J, Pansuriya KC. Alkynyl hydroxylamines: key precursors for 1,2-N/O heterocycles. Chem Commun (Camb) 2025; 61:6212-6225. [PMID: 40168032 DOI: 10.1039/d5cc00447k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
1,2-N/O Heterocycles are privileged scaffolds found in numerous natural products and have been shown to exhibit diverse pharmacological properties. Additionally, these compounds have emerged as important synthons in organic chemistry. Recent years have witnessed immense interest in these heterocycles from both the medicinal and the synthetic chemistry community. In light of the ever-increasing demand for isoxazolidine, isoxazoline, isoxazole, 1,2-oxazinane, 1,2-oxazine and 1,2-oxazepine in drug discovery, this review highlights an overview of recent methods (up to 2024) for the synthesis of these heterocycles starting from alkynyl hydroxylamines. The mechanistic pathways and stereo-electronic factors affecting yield and selectivity of the products are briefly explained to generate the understanding needed for future developments in this domain.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Juhi Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kaushik C Pansuriya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Gharpure SJ, Pansuriya KC, Pal J, Hajam SA, Kumari S. Iodine(III)-Mediated Keto-oximation of O-Alkynyl Hydroxylamines: A Route to 3-Acyl Isoxazolines and 1,2-Oxazines. Org Lett 2024; 26:9787-9792. [PMID: 39496286 DOI: 10.1021/acs.orglett.4c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
An intramolecular iodine(III)-mediated keto-oximation of O-alkynyl hydroxylamines offers rapid and straightforward access to 3-acyl Δ2-isoxazolines and 1,2-oxazines. This approach features mild, metal-free, and aerobic reaction conditions with good functional group tolerance. Moreover, the synthetic utility of this method is demonstrated by the synthesis of unique structural motifs such as isoxazolidine, 3-vinyl isoxazoline, and 2,5-diphenylpyrazine derivatives by the conversion of 3-acyl Δ2-isoxazolines, thereby showcasing its efficiency and applicability in synthetic chemistry.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kaushik C Pansuriya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Juhi Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Showkat A Hajam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanyog Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Hu ZN, Wang YH, Wu JB, Chen Z, Hong D, Zhang C. Solvent-dependent chemoselective synthesis of different isoquinolinones mediated by the hypervalent iodine(III) reagent PISA. Beilstein J Org Chem 2024; 20:1914-1921. [PMID: 39135661 PMCID: PMC11318619 DOI: 10.3762/bjoc.20.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Isoquinolinone is an important heterocyclic framework in natural products and biologically active molecules, and the efficient synthesis of this structural motif has received much attention in recent years. Herein, we report a (phenyliodonio)sulfamate (PISA)-mediated, solvent-dependent synthesis of different isoquinolinone derivatives. The method provides highly chemoselective access to 3- or 4-substituted isoquinolinone derivatives by reacting o-alkenylbenzamide derivatives with PISA in either acetonitrile or wet hexafluoro-2-isopropanol.
Collapse
Affiliation(s)
- Ze-Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Yan-Hui Wang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Jia-Bing Wu
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Ze Chen
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Dou Hong
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
Tang P, Wen L, Ma HJ, Yang Y, Jiang Y. Synthesis of acyloxy-2 H-azirine and sulfonyloxy-2 H-azirine derivatives via a one-pot reaction of β-enamino esters, PIDA and carboxylic acid or sulfonic acid. Org Biomol Chem 2022; 20:3061-3066. [PMID: 35344576 DOI: 10.1039/d2ob00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIDA mediated oxidative acyloxylation/azirination and sulfonyloxylation/azirination of β-enamino esters were investigated. A series of functionalized acyloxy-2H-azirine and sulfonyloxy-2H-azirine derivatives was synthesized in moderate to good yields. This represents the first oxidative sulfonyloxylation/azirination of β-enamino esters with PIDA and sulfonic acid for access to sulfonyloxy-2H-azirine. Hypervalent iodine reagents enable cascade C-O/C-N bond formation. Furthermore, a possible reaction pathway was proposed based on the experimental results.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
7
|
Zhang L, Wang Z, Sun S, Ni S, Wen L, Li M. Metal‐Free
Catalyzed Cyclization of
N
‐Methoxybenzamides
to Construct Quaternary
Carbon‐Containing
Isoindolinones. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin‐Bao Zhang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Zi‐Chen Wang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Sheng‐Zheng Sun
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Shao‐Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou Guangdong 515063 China
| | - Li‐Rong Wen
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Ming Li
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| |
Collapse
|
8
|
Röckl JL, Dörr M, Waldvogel SR. Electrosynthesis 2.0 in 1,1,1,3,3,3‐Hexafluoroisopropanol/Amine Mixtures. ChemElectroChem 2020. [DOI: 10.1002/celc.202000761] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes L. Röckl
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| | - Maurice Dörr
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|