1
|
Visible-light-Induced synthesis of imidazolidines through formal [3 + 2] cycloaddition of aromatic imines with N,N,N',N'-tetramethyldiaminomethane. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Cui H, Li K, Wang Y, Song M, Wang C, Wei D, Li EQ, Duan Z, Mathey F. Copper(i)/Ganphos catalysis: enantioselective synthesis of diverse spirooxindoles using iminoesters and alkyl substituted methyleneindolinones. Org Biomol Chem 2020; 18:3740-3746. [PMID: 32367104 DOI: 10.1039/d0ob00546k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper-catalyzed asymmetric 1,3-dipolar cycloaddition of glycine iminoesters with alkyl substituted 3-methylene-2-oxindoles is described. By using de novo design of P-stereogenic phosphines as ligands, spiro[pyrrolidin-3,3'-oxindole]s are generated in good to excellent yields with high asymmetric induction. A further reduced catalyst loading of 0.1 mol% is sufficient to achieve a satisfactory enantioselectivity of 90% ee. The DFT calculations suggest the second Michael addition of the 1,3-dipole to be the rate- and enantio-determining step. A key feature of this 1,3-dipolar cycloaddition is the wide substrate applicability, even with alkyl aldehyde-derived azomethine ylide; thus it has streamlined a highly enantioselective access to a new class of antiproliferative agents, MDM2-p53.
Collapse
Affiliation(s)
- Hao Cui
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Ke Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yue Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Manman Song
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Congcong Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Donghui Wei
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|