1
|
Manna A, Joshi H, Singh VK. Asymmetric Synthesis of Spiro-3,3'-cyclopropyl Oxindoles via Vinylogous Michael Initiated Ring Closure Reaction. J Org Chem 2022; 87:16755-16766. [PMID: 36468901 DOI: 10.1021/acs.joc.2c02402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel organocatalytic cascade approach for the synthesis of spiro-cyclopropyl oxindole derivatives has been developed. The methodology is based on asymmetric vinylogous Michael addition of 4-nitroisoxazole derivatives to N-Boc isatylidene malonates followed by intramolecular alkylation. Its remarkable stereocontrol, wide substrate scope, and scalability highlight this new developed strategy. Moreover, this work represents the first example of vinylogous Michael initiated ring closure (MIRC) reaction for the synthesis of chiral 3,3'-cyclopropyl oxindole.
Collapse
Affiliation(s)
- Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Harshit Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
2
|
Wang N, Yan X, Hu ZT, Feng Y, Zhu L, Chen ZH, Wang H, Wang QL, Ouyang Q, Zheng PF. Intramolecular H-Bonds in an Organocatalyst Enabled an Asymmetric Michael/Alkylation Cascade Reaction to Construct Spirooxindoles Incorporating a Densely Substituted Cyclopropane Motif. Org Lett 2022; 24:8553-8558. [DOI: 10.1021/acs.orglett.2c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Na Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Yan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zi-Tian Hu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Feng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zi-Hang Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Huan Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quan-Ling Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
3
|
Pan Y, Ren W, Zhang Z, Luo F, Hou X, Li X, Yang YF, Wang Y. Tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous para-quinone methides with 3-chlorooxindoles: construction of vicinal quaternary carbon centers. Org Chem Front 2022. [DOI: 10.1039/d2qo00471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous para-quinone methides with 3-chlorooxindoles has been developed, providing dispirooxindole–cyclopentane–cyclohexadienones with vicinal quaternary carbon centers.
Collapse
Affiliation(s)
- Yuan Pan
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Zhanhao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fengbiao Luo
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaohan Hou
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoyang Li
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
4
|
Tian X, Zhang Y, Ren W, Wang Y. Synthesis of functionalized 3,2′-pyrrolidinyl spirooxindoles via domino 1,6-addition/annulation reactions of para-quinone methides and 3-chlorooxindoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01605a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient diastereoselective [4 + 1] cycloaddition of ortho-tosylaminophenyl-substituted p-QMs with 3-chlorooxindoles has been developed to afford 3,2′-pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
5
|
Torán R, Miguélez R, Sanz‐Marco A, Vila C, Pedro JR, Blay G. Asymmetric Addition and Cycloaddition Reactions with Ylidene‐Five‐Membered Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ricardo Torán
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Rubén Miguélez
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Amparo Sanz‐Marco
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - José R. Pedro
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| |
Collapse
|
6
|
Liu L, Li Y, Huang T, Kong D, Wu M. A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids. Beilstein J Org Chem 2021; 17:2321-2328. [PMID: 34621395 PMCID: PMC8450974 DOI: 10.3762/bjoc.17.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
A novel method for the synthesis of 3-monohalooxindoles by acidolysis of isatin-derived 3-phosphate-substituted oxindoles with haloid acids was developed. This synthetic strategy involved the preparation of 3-phosphate-substituted oxindole intermediates and SN1 reactions with haloid acids. This new procedure features mild reaction conditions, simple operation, good yield, readily available and inexpensive starting materials, and gram-scalability.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| | - Yue Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| | - Tiao Huang
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| | - Dulin Kong
- School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P. R. China
| | - Mingshu Wu
- Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. China
| |
Collapse
|
7
|
Abstract
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research due to their mild reaction conditions, cost-effective nature, non-toxicity, and environmentally benign approach that obviates the need for transition metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts, Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids, 4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed interest because of their regioselectivity. In this review, we present recent advances in regiodivergent reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction pathways of achieving regiodivergent products by changes in conditions such as solvents, additives, or the temperature.
Collapse
|
8
|
Lin C, Xing Q, Xie H. A formal intermolecular [4 + 1] cycloaddition reaction of 3-chlorooxindole and o-quinone methides: a facile synthesis of spirocyclic oxindole scaffolds. RSC Adv 2021; 11:18576-18579. [PMID: 35480909 PMCID: PMC9033455 DOI: 10.1039/d1ra01086g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Herein, we developed an efficient and straightforward method for the rapid synthesis of spirocyclic oxindole scaffolds via the [4 + 1] cyclization reaction of 3-chlorooxindole with o-quinone methides (o-QMs), which were generated under mild conditions. The products could be obtained in excellent yields with numerous types of 3-chlorooxindole. This methodology features mild reaction conditions, high atom-economy and broad substrate scope. Herein, we developed an efficient and straightforward method for the rapid synthesis of spirocyclic oxindole scaffolds via the [4 + 1] cyclization reaction of 3-chlorooxindole with o-quinone methides (o-QMs), which were generated under mild conditions.![]()
Collapse
Affiliation(s)
- Chao Lin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| | - Qi Xing
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| | - Honglei Xie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
9
|
Liu Y, Zhang Y, Huang Q, Gou C, Li Q, Dai Q, Leng H, Li J. Organocatalytic Enantioselective Synthesis of Tetrahydro‐Furanyl Spirooxindoles via [3+2] Annulations of 3‐Hydroxyoxindoles and Cyclic Ketolactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Ying Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qian‐Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qing‐Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Hai‐Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
10
|
Yuan WC, Lei CW, Zhao JQ, Wang ZH, You Y. Organocatalytic Asymmetric Cyclopropanation of 3-Acylcoumarins with 3-Halooxindoles: Access to Spirooxindole-cyclopropa[ c]coumarin Compounds. J Org Chem 2021; 86:2534-2544. [PMID: 33423494 DOI: 10.1021/acs.joc.0c02653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly diastereo- and enantioselective cyclopropanation reaction of 3-acylcoumarins with 3-halooxindoles catalyzed by an organocatalyst through a [2 + 1] Michael/intramolecular cyclization process was developed. This scenario provides a facile strategy to access spirooxindole-cyclopropa[c]coumarin compounds bearing three continuous stereocenters, including two vicinal quaternary all-carbon stereocenters with high to excellent diastereo- and enantioselectivities. The HRMS study revealed the vital importance of the ammonium ylide intermediate in the catalytic process.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Chuan-Wen Lei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
12
|
Zhang RY, Jin F, Bao XG, Li HY, Xu XP, Ji SJ. Synthesis of Spiro 3,3'-Cyclopropyl Oxindoles Via N-Bromosuccinimide-Mediated Ring-Closing and Contraction Cascade. J Org Chem 2021; 86:1141-1151. [PMID: 33314930 DOI: 10.1021/acs.joc.0c02610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An N-bromosuccinimide-mediated cascade reaction involving the cyclization/oxygen-migration/ring-contraction process of 3-(β, β-diaryl) indolylethanol was disclosed. A variety of spiro 3,3'-cyclopropyl oxindole derivatives were efficiently synthesized in good yields under mild reaction conditions. A possible mechanism was suggested based on intermediate isolation and computational studies.
Collapse
Affiliation(s)
- Rui-Ying Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xiao-Guang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|