1
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Semproli R, Robescu MS, Cambò M, Mema K, Bavaro T, Rabuffetti M, Ubiali D, Speranza G. Chemical and Enzymatic Approaches to Esters of
sn
‐Glycero‐3‐Phosphoric Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Semproli
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Marina S. Robescu
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Mattia Cambò
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| | - Klodiana Mema
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
- Consorzio Italbiotec Piazza della Trivulziana 4/A 20126 Milano Italy
| | - Teodora Bavaro
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Marco Rabuffetti
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| | - Daniela Ubiali
- Department of Drug Sciences University of Pavia Viale Taramelli, 12 I-27100 Pavia Italy
| | - Giovanna Speranza
- Department of Chemistry University of Milano Via Golgi, 19 I-20133 Milano Italy
| |
Collapse
|
4
|
Zhao SY, Li N, Luo WY, Zhang NN, Zhou RY, Li CY, Wang J. Chemical synthesis and antigenic activity of a phosphatidylinositol mannoside epitope from Mycobacterium tuberculosis. Chem Commun (Camb) 2020; 56:14067-14070. [PMID: 33104149 DOI: 10.1039/d0cc05573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphatidylinositol mannosides (PIMs) have been investigated as lipidic antigens for a new subunit tuberculosis vaccine. A non-natural diacylated phosphatidylinositol mannoside (Ac2PIM2) was designed and synthesized by mimicking the natural PIM6 processing procedure in dentritic cells. This synthetic Ac2PIM2 was achieved from α-methyl d-glucopyranoside 1 in 17 steps in 2.5% overall yield. A key feature of the strategy was extending the use of the chiral myo-inositol building block A to the O-2 and O-6 positions of the inositol unit to allow for introducing the mannose building blocks B1 and B2, and to the O-1 position for the phosphoglycerol building block C. Building block A, being a flexible core unit, may facilitate future access to other higher-order PIM analogues. A preliminary antigenic study showed that the synthetic PIM epitope (Ac2PIM2) was significantly more active than natural Ac2PIM2, which indicated that the synthetic Ac2PIM2 can be strongly immunoactive and may be developed as a potential vaccine.
Collapse
Affiliation(s)
- Shi-Yuan Zhao
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Na Li
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Wan-Yue Luo
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Nan-Nan Zhang
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Rong-Ye Zhou
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Chen-Yu Li
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Jin Wang
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China. and Université de Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France and CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
| |
Collapse
|
5
|
Tanaka S. Asymmetric Synthesis of Chiral Heterocyclic Compounds via Intramolecular Dehydrative Allylation Catalyzed by a Cp-ruthenium-Brønsted Acid Combined Catalyst. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shinji Tanaka
- Research Center for Materials Science, Nagoya University
| |
Collapse
|