1
|
Kim SO, Yun SR, Lee H, Jo J, Ahn DS, Kim D, Kosheleva I, Henning R, Kim J, Kim C, You S, Kim H, Lee SJ, Ihee H. Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities. Nat Commun 2024; 15:6287. [PMID: 39060271 PMCID: PMC11282289 DOI: 10.1038/s41467-024-50696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein. We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity. SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes.
Collapse
Affiliation(s)
- Seong Ok Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junbeom Jo
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Jungmin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanui Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
3
|
Ding Y, Zhao Z, Matysik J, Gärtner W, Losi A. Mapping the role of aromatic amino acids within a blue-light sensing LOV domain. Phys Chem Chem Phys 2021; 23:16767-16775. [PMID: 34319324 DOI: 10.1039/d1cp02217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosensing LOV (Light, Oxygen, Voltage) domains detect and respond to UVA/Blue (BL) light by forming a covalent adduct between the flavin chromophore and a nearby cysteine, via the decay of the flavin triplet excited state. LOV domains where the reactive cysteine has been mutated are valuable fluorescent tools for microscopy and as genetically encoded photosensitisers for reactive oxygen species. Besides being convenient tools for applications, LOV domains without the reactive cysteine (naturally occurring or engineered) can still be functionally photoactivated via formation of a neutral flavin radical. Tryptophans and tyrosines are held as the main partners as potential electron donors to the flavin excited states. In this work, we explore the relevance of aromatic amino acids in determining the photophysical features of the LOV protein Mr4511 from Methylobacterium radiotolerans by introducing point mutations into the C71S variant that does not form the covalent adduct. By using an array of spectroscopic techniques we measured the fluorescence quantum yields and lifetimes, the triplet yields and lifetimes, and the efficiency of singlet oxygen (SO) formation for eleven Mr4511 variants. Insertion of Trp residues at distances between 0.6 and 1.5 nm from the flavin chromophore results in strong quenching of the flavin excited triplet state and, at the shorter distances even of the singlet excited state. The mutation F130W (ca. 0.6 nm) completely quenches the singlet excited state, preventing triplet formation: in this case, even if the cysteine is present, the photo-adduct is not formed. Tyrosines are also quenchers for the flavin excited states, although not as efficient as Trp residues, as demonstrated with their substitution with the inert phenylalanine. For one of these variants, C71S/Y116F, we found that the quantum yield of formation for singlet oxygen is 0.44 in aqueous aerobic solution, vs 0.17 for C71S. Based on our study with Mr4511 and on literature data for other LOV domains we suggest that Trp and Tyr residues too close to the flavin chromophore (at distances less than 0.9 nm) reduce the yield of photoproduct formation and that introduction of inert Phe residues in key positions can help in developing efficient, LOV-based photosensitisers.
Collapse
Affiliation(s)
- Yonghong Ding
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
4
|
Andrikopoulos PC, Chaudhari AS, Liu Y, Konold PE, Kennis JTM, Schneider B, Fuertes G. QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors. Phys Chem Chem Phys 2021; 23:13934-13950. [PMID: 34142688 PMCID: PMC8246142 DOI: 10.1039/d1cp00447f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022]
Abstract
Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.
Collapse
Affiliation(s)
- Prokopis C Andrikopoulos
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Aditya S Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Patrick E Konold
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 De Boelelaan, 1081HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 De Boelelaan, 1081HV Amsterdam, The Netherlands
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.
| |
Collapse
|
5
|
Dietler J, Schubert R, Krafft TGA, Meiler S, Kainrath S, Richter F, Schweimer K, Weyand M, Janovjak H, Möglich A. A Light-Oxygen-Voltage Receptor Integrates Light and Temperature. J Mol Biol 2021; 433:167107. [PMID: 34146595 DOI: 10.1016/j.jmb.2021.167107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Sensory photoreceptors enable organisms to adjust their physiology, behavior, and development in response to light, generally with spatiotemporal acuity and reversibility. These traits underlie the use of photoreceptors as genetically encoded actuators to alter by light the state and properties of heterologous organisms. Subsumed as optogenetics, pertinent approaches enable regulating diverse cellular processes, not least gene expression. Here, we controlled the widely used Tet repressor by coupling to light-oxygen-voltage (LOV) modules that either homodimerize or dissociate under blue light. Repression could thus be elevated or relieved, and consequently protein expression was modulated by light. Strikingly, the homodimeric RsLOV module from Rhodobacter sphaeroides not only dissociated under light but intrinsically reacted to temperature. The limited light responses of wild-type RsLOV at 37 °C were enhanced in two variants that exhibited closely similar photochemistry and structure. One variant improved the weak homodimerization affinity of 40 µM by two-fold and thus also bestowed light sensitivity on a receptor tyrosine kinase. Certain photoreceptors, exemplified by RsLOV, can evidently moonlight as temperature sensors which immediately bears on their application in optogenetics and biotechnology. Properly accounted for, the temperature sensitivity can be leveraged for the construction of signal-responsive cellular circuits.
Collapse
Affiliation(s)
- Julia Dietler
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Roman Schubert
- Biophysical Chemistry, Humboldt-University Berlin, 10115 Berlin, Germany
| | - Tobias G A Krafft
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Simone Meiler
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Stephanie Kainrath
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria 3800, Australia
| | - Florian Richter
- Biophysical Chemistry, Humboldt-University Berlin, 10115 Berlin, Germany
| | - Kristian Schweimer
- Biopolymers, University of Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, University of Bayreuth, 95447 Bayreuth, Germany
| | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria 3800, Australia
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany; Biophysical Chemistry, Humboldt-University Berlin, 10115 Berlin, Germany; Bayreuth Center for Biochemistry & Molecular Biology, University of Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|