1
|
Wang C, Li X, Chen S, Shan T. Advances in High-Temperature Non-Metallocene Catalysts for Polyolefin Elastomers. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1334. [PMID: 40141617 PMCID: PMC11944024 DOI: 10.3390/ma18061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Despite the great successes achieved by metallocene catalysts in high-value-added polyolefin elastomer, the challenging preparation conditions and undesirable high-temperature molecular weight capabilities have compromised the efficiency and cost of polyolefin in industrial production. Recently, non-metallocene catalysts have received considerable attention due to their high thermostability, especially when coordinated with early transition metals. This review provides an overview of these early transition metal non-metallocene catalysts, which are mainly composed of N,N'-, N,O-, and N,S-bidentate complexes and tridentate complexes. The structural characteristics, catalytic performance, advantages, and disadvantages of the relevant non-metallocene catalysts, as well as their applications, are discussed. Candidates for commercialization of non-metallocene catalysts are proposed-focusing on imine-enamine, amino-quinoline, and pyridine-imine catalysts-by comparing the successful industrialization cases of metallocene catalysts. Finally, the trend in the research on non-metallocene catalysts and the strategies to address the challenges limiting their commercialization are considered.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250024, China;
- Satellite Chemical Co., Ltd., Jiaxing 314001, China;
| | - Xin Li
- Satellite Chemical Co., Ltd., Jiaxing 314001, China;
| | - Si Chen
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhang Z, Li T, Dong Y, Lu Y. Unusual phenomena of ethylene homopolymerization catalyzed by α-diimine nickel emerging in a microflow platform. RSC Adv 2025; 15:5801-5807. [PMID: 39980988 PMCID: PMC11840888 DOI: 10.1039/d5ra00557d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025] Open
Abstract
This study focuses on ethylene homopolymerization catalyzed by α-diimine catalysts within a designed microfluidic system. Distinct from conventional batch reactors, this microfluidic configuration effectively eradicates the reaction environment heterogeneity, thereby guaranteeing homogeneous reaction conditions and decoupling the mass transfer from the reaction process. This unique setup enables precise modulation of ethylene concentration, facilitating the isolation of variables to scrutinize the effects of temperature and pressure on the polymerization. By varying residence times, it's revealed that the reaction rate is ethylene concentration-independent. Variable separation studies between concentration and temperature show an inverse relationship between temperature and branching degree (BD), contrasting traditional batch reactions due to ethylene concentration changes. Pressure studies indicate that higher pressure leads to lower BD. Different product structures' steric hindrances influence the reaction rate; greater hindrance slows it down. These novel findings suggest microreactors offer new perspectives on late transition metal-catalyzed ethylene homopolymerization, potentially enabling breakthroughs in mass production.
Collapse
Affiliation(s)
- Zeen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Tianjiao Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yong Dong
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yangcheng Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
3
|
Li X, Hu Z, Mahmood Q, Wang Y, Sohail S, Zou S, Liang T, Sun WH. Thermally stable C2-symmetric α-diimine nickel precatalysts for ethylene polymerization: semicrystalline to amorphous PE with high tensile and elastic properties. Dalton Trans 2024; 53:18193-18206. [PMID: 39450637 DOI: 10.1039/d4dt02543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In α-diimine nickel catalyst-mediated ethylene polymerization, adjusting catalytic parameters such as steric and electronic factors, as well as spectator ligands, offers an intriguing approach for tailoring the thermal and physical properties of the resulting products. This study explores two sets of C2-symmetric α-diimine nickel complexes-nickel bromide and nickel chloride-where ortho-steric and electronic substituents, as well as nickel halide, were varied to regulate simultaneously chain walking, chain transfer, and the properties of the polymers produced. These complexes were activated in situ with Et2AlCl, resulting in exceptionally high catalytic activities (in the level of 106-107 g (PE) mol-1 (Ni) h-1) under all reaction conditions. Nickel bromide complexes, with higher ortho-steric hindrance, exhibited superior catalytic activity compared to their less hindered counterparts, whereas the reverse was observed for complexes containing chloride. Increased steric hindrance in both sets of complexes facilitated higher polymer molecular weights and promoted chain walking reactions at lower reaction temperature (40 °C), while the effect became less pronounced at higher temperature (100 °C). However, the electron-withdrawing effect of ortho-substituents hindered the rate of monomer insertion, chain propagation, and chain walking reactions, leading to the synthesis of semi-crystalline polyethylene with an exceptionally high melt temperature of 134.6 °C and a high crystallinity of up to 31.9%. Most importantly, nickel bromide complexes demonstrated significantly higher activity compared to their chloride counterparts, while the latter yielded polymers with higher molecular weights and increased melt temperatures. These high molecular weights, coupled with controlled branching degrees, resulted in polyethylenes with excellent tensile strength (up to 13.9 MPa) and excellent elastic properties (up to 81%), making them suitable for a broad range of applications.
Collapse
Affiliation(s)
- Xiaoxu Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Zexu Hu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sunny Sohail
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Song Zou
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Wen-Hua Sun
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Guo L, Li J, Zhao W, Wei P, Ju Y, Cui X, Yuan L, Ji M, Liu Z. Steric Influences on Chain Microstructure in Palladium-Catalyzed α-Olefin (Co)polymerization: Unveiling the Steric-Deficient Effect. Inorg Chem 2024. [PMID: 39267326 DOI: 10.1021/acs.inorgchem.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
This study addresses the challenge of controlling branching density and branch-type distribution in late-transition-metal-catalyzed chain walking polymerizations. We explored α-diimine Pd(II) complexes with incrementally increased ortho-aryl sterics for long-chain α-olefin (co)polymerization. Pd0-Pd3 catalysts, which feature gradually increased ortho-aryl sterics and at least one small CH3 substituent, exhibited similar 2,1-insertion fractions (44-50%), polymer branching densities (55-63/1000C), and melting temperatures (26-28 °C). In contrast, Pd4 with bulky ortho-aryl sterics covering all sides demonstrated a significant increase in 2,1-insertion fractions up to 82%, leading to "PE-like" polymers with high melting temperatures (Tm > 111 °C). This abrupt change in polymerization behavior, termed the "steric-deficient effect", contrasts with the gradual changes observed in similar Ni(II) systems that we reported previously. Furthermore, due to the rapid chain walking ability of Pd(II) catalysts in long-chain α-olefin (co)polymerization, these catalysts favor the production of polyolefins with higher proportions of methyl branches compared to those produced by Ni(II) catalysts. Particularly, these Pd(II) catalysts are capable of synthesizing functionalized semicrystalline copolymers by copolymerizing 1-octene with a variety of polar comonomers, thereby significantly altering the surface properties of the materials.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wei Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peng Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanping Ju
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoru Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liqing Yuan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mingjun Ji
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
5
|
Rauf HS, Liu YS, Arslan M, Solanki SPS, Deydier E, Poli R, Grabow LC, Harth E. Benchtop-Stable Carbyl Iminopyridyl Ni II Complexes for Olefin Polymerization. ACS Catal 2024; 14:13136-13147. [PMID: 39263544 PMCID: PMC11385416 DOI: 10.1021/acscatal.4c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Design of catalysts for Ni-catalyzed olefin polymerization predominantly focuses on ligand design rather than the activation process when attempting to achieve a broader scope of polyolefin micro- and macrostructures. Air-stable alkyl-or aryl-functionalized NiII precatalysts were designed which eliminate the need of in situ alkylating processes and are activated solely by halide abstraction to generate the cationic complex for olefin polymerization. These complexes represent an emerging class of olefin polymerization catalysts, enabling the study of various cocatalysts forming either inner- or outer-sphere ion pairs. It is demonstrated that an organoboron cocatalyst activation produces a well-defined ion pair, which in contrast to ill-defined organoaluminum cocatalysts, can directly activate the complex by halide abstraction to yield comparatively higher molecular weight homo/copolymers. Under high ethylene pressure, broader branching densities and the gradual incorporation of short-chain branches were achieved, circumventing the need for elaborate ligand design and copolymerization with α-olefins. The underlying chain-walking mechanism and ion pair interactions were further elucidated by DFT calculations. A phenyl group on the bridging carbon functioned as a rotational barrier, producing higher molecular weight polymers compared to methyl-substituted analogs. Here, we provide a perspective to manipulate the iminopyridyl NiII system, leveraging ion pair interactions and ligand design to govern polyolefin molecular weights and microstructures.
Collapse
Affiliation(s)
- Hasaan S Rauf
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| | - Muhammad Arslan
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| | - Surya Pratap S Solanki
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, S222 Engineering Building 1, Houston, Texas 77204, United States
| | - Eric Deydier
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris, France
| | - Lars C Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, S222 Engineering Building 1, Houston, Texas 77204, United States
| | - Eva Harth
- Department of Chemistry, Center of Excellence in Polymer Chemistry (CPEC), University of Houston, 3589 Cullen Boulevard, Houston, Texas 77004, United States
| |
Collapse
|
6
|
Medina JT, Tran QH, Hughes RP, Wang X, Brookhart M, Daugulis O. Ethylene Polymerizations Catalyzed by Fluorinated "Sandwich" Diimine-Nickel and Palladium Complexes. J Am Chem Soc 2024; 146:15143-15154. [PMID: 38781282 DOI: 10.1021/jacs.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Nickel and palladium complexes bearing "sandwich" diimine ligands with perfluorinated aryl caps have been synthesized, characterized, and explored in ethylene polymerization reactions. The X-ray crystallographic analysis of the precatalysts 16 and 6b shows differences from their nonfluorinated analogues 17 and 19, with the perfluorinated aryl caps centered precisely over the nickel and palladium centers, which results in higher buried volumes of the metal centers relative to the nonfluorinated analogues. The sandwich diimine-palladium complexes 5a and 5b containing perfluorinated aryl caps polymerize ethylene in a controlled fashion with activities that are substantially increased compared with their nonfluorinated analogues. Migratory insertion rates in relevant methyl ethylene complexes agree with the activities exhibited in bulk polymerization experiments. DFT studies suggest that facility of ethylene rotation from its preferred orientation perpendicular to the Pd-alkyl bond into a parallel in-plane conformation contributes to the higher polymerization activity for 5b relative to 18a. For these palladium systems, polymer molecular weights can be controlled via hydrogen addition (hydrogenolysis), which is unusual for late-transition-metal-catalyzed olefin polymerizations with no catalyst deactivation occurring. Sandwich diimine-nickel complexes 6a and 6b with perfluorinated aryl caps show ethylene polymerization activities that are about half of those of classical tetraisopropyl-substituted catalyst 2 but again are more active than the analogous nonfluorinated sandwich complexes. Ethylene polymerizations exhibit living behavior, and branched ultrahigh-molecular-weight polyethylenes (UHMWPEs) with very low-molecular-weight distributions (less than 1.1) are obtained. The activated nickel catalysts are stable in the absence of monomer and show good long-term stability at 25 °C.
Collapse
Affiliation(s)
- Joseph T Medina
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Quan H Tran
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Maurice Brookhart
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Dashti A, Ahmadi M. Recent Advances in Controlled Production of Long-Chain Branched Polyolefins. Macromol Rapid Commun 2024; 45:e2300746. [PMID: 38488683 DOI: 10.1002/marc.202300746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Polyolefins, composed of carbon and hydrogen atoms, dominate global polymer production. This stems from the wide range of physical and mechanical properties that various polyolefins can cover. Their versatile properties are largely tuned by chain microstructure, including molar mass distribution, comonomer content, and long-chain branching (LCB). Specifically, LCB imparts unique characteristics, notably enhances processability crucial for downstream applications. Tailoring LCB structural features has encouraged academic and industrial efforts, chronicle in this review from a chemistry standpoint. While encompassing post-reaction modification based traditional methods like peroxide grafting, ionizing beam irradiation, and coupling reactions, the main focus is given to catalyst-centric strategies and innovative polymerization schemes. The advent of single-site catalysts-metallocenes and late transition metals catalysts-amplifies interest in tailored chemical methods, but the progress in LCB formation flourishes via tandem catalytic systems and bimetallic catalysts under controlled reaction conditions. Specifically, the breakthrough in coordinative chain transfer polymerization unveils a novel avenue for controlled LCB synthesis by sequential chain propagation, transfer, liberation, and enchainment. This short review highlights recent approaches for the production of LCB polyolefins that can provide a roadmap crucial for researchers in academia and industry, steering their efforts toward further advancements in the production of tailored polyolefin.
Collapse
Affiliation(s)
- Arezoo Dashti
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
| | - Mostafa Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 159163-4311, Iran
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
8
|
Varga V, Pokorná K, Lamač M, Horáček M, Pinkas J. Preparation of silyl-terminated branched polyethylenes catalyzed by Brookhart's nickel diimine complex activated with hydrosilane/B(C 6F 5) 3. Dalton Trans 2024; 53:5249-5257. [PMID: 38406967 DOI: 10.1039/d3dt04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Brookhart's nickel α-diimine complex [(κ2-N,N-BIAN)NiCl2] (1) (where BIAN = {Ar-NAceN-Ar}, Ace = acenaphthen-1,2-diyl, and Ar = 2,6-(iPr)2-C6H3) activated with a hydrosilane/B(C6F5)3 (SiHB) adduct forms a highly active catalytic system for ethylene polymerization. Under optimal conditions, the activity of the system depends on the nature of hydrosilane and decreases in the order R3SiH > Ph2SiH2 > PhSiH3. The decrease in system activity within the hydrosilane series is correlated with increasing formation of Ni(I) species. In addition to their activation effect, hydrosilanes act as efficient chain termination/chain transfer agents, with the Si/Ni ratio controlling the molecular weight of the resulting polyethylene (PE). The use of Et3SiH generated elastomeric, highly branched polymers with a saturated chain-end, while systems using Ph2SiH2 and PhSiH3 led to branched end-functionalized PEs terminated with the hydrosilyl functionality (i.e. br-PE-SiPh2H or br-PE-SiPhH2).
Collapse
Affiliation(s)
- Vojtech Varga
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Kristýna Pokorná
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Martin Lamač
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Michal Horáček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Jiří Pinkas
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| |
Collapse
|
9
|
Cheung CS, Qiu Z, Li D, Deng H, Zheng H, Gao H. Experimental and theoretical insights into palladium-mediated polymerization of para-N, N-disubstituted aminostyrene. Dalton Trans 2023; 52:17573-17582. [PMID: 37966170 DOI: 10.1039/d3dt03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Experimental and theoretical insights into polymerization of para-N,N-disubstituted aminostyrene monomers (St-4-NR2, R = Me, Et, Ph) using cationic α-diimine palladium complexes have been initially reported. The effects of the catalyst structure and monomer substituent were studied systematically. Polymerization turnover frequency (TOF) was shown to decrease in the order of monomer substituents Me > Et > Ph, whereas the molecular weight of the produced polymers showed an opposite trend (Me < Et < Ph). Methanol-mediated polymerization of para-N,N-dimethylaminostyrene (DMAS), along with polymer chain-end analysis, and palladium intermediate isolation proved that palladium-initiated DMAS polymerization obeyed a cationic mechanism. Comprehensive theoretical calculations further revealed that the carbocation was generated from the insertion of DMAS into the palladium center rather than the polarization of the methyl palladium intermediate with a coordinated DMAS. The produced amine-functionalized amorphous polystyrenes have low stereoregularity and exhibit good hydrophilic properties. The poly(para-N,N-disphenylaminostyrene) is a luminescent polymer and shows fluorescence properties, rendering this material a promising candidate for versatile potential applications.
Collapse
Affiliation(s)
- Chi Shing Cheung
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zonglin Qiu
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Donghui Li
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huiyun Deng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Zhao X, Hou Y, Ye L, Zong K, An Q, Liu B, Yang M. Synthesis of α-Diimine Complex Enabling Rapidly Covalent Attachment to Silica Supports and Application of Homo-/Heterogeneous Catalysts in Ethylene Polymerization. Int J Mol Sci 2023; 24:13645. [PMID: 37686453 PMCID: PMC10487567 DOI: 10.3390/ijms241713645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
For covalent attachment-supported α-diimine catalysts, on the basis of ensuring the thermal stability and activity of the catalysts, the important problem is that the active group on the catalyst can quickly react with the support, anchoring it firmly on the support, shortening the loading time, reducing the negative impact of the support on the active centers, and further improving the polymer morphology, which makes them suitable for use in industrial polymerization temperatures. Herein, we synthesized a α-diimine nickel(II) catalyst bearing four hydroxyl substituents. The hydroxyl substituents enable the catalyst to be immobilized firmly on silica support by covalent linkage in 5-10 min. Compared with the toluene solvent system, the homogeneous catalysts show high activity and thermal stability in hexane solvent at the same conditions. Compared with homogeneous catalysts, heterogeneous catalysis leads to improvements in catalyst lifetime, polymer morphology control, catalytic activity, and the molecular weight of polyethylene (up to 679 kg/mol). The silica-supported catalysts resulted in higher melting temperatures as well as lower branching densities in polyethylenes. Even at 70 °C, the polyethylene prepared by S-CatA-2 still exhibits dispersed particle morphology, and there is no phenomenon of reactor fouling, which is suitable for industrial polymerization processes.
Collapse
Affiliation(s)
- Xiaobei Zhao
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yanhui Hou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Linlin Ye
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Kening Zong
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingming An
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300160, China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Min Yang
- Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
11
|
Jiang S, Zheng Y, Oleynik IV, Yu Z, Solan GA, Oleynik II, Liu M, Ma Y, Liang T, Sun WH. N, N-Bis(2,4-Dibenzhydryl-6-cycloalkylphenyl)butane-2,3-diimine-Nickel Complexes as Tunable and Effective Catalysts for High-Molecular-Weight PE Elastomers. Molecules 2023; 28:4852. [PMID: 37375408 DOI: 10.3390/molecules28124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Four examples of N,N-bis(aryl)butane-2,3-diimine-nickel(II) bromide complexes, [ArN=C(Me)-C(Me)=NAr]NiBr2 (where Ar = 2-(C5H9)-4,6-(CHPh2)2C6H2 (Ni1), Ar = 2-(C6H11)-4,6-(CHPh2)2C6H2 (Ni2), 2-(C8H15)-4,6-(CHPh2)2C6H2 (Ni3) and 2-(C12H23)-4,6-(CHPh2)2C6H2 (Ni4)), disparate in the ring size of the ortho-cycloalkyl substituents, were prepared using a straightforward one-pot synthetic method. The molecular structures of Ni2 and Ni4 highlight the variation in the steric hindrance of the ortho-cyclohexyl and -cyclododecyl rings exerted on the nickel center, respectively. By employing EtAlCl2, Et2AlCl or MAO as activators, Ni1-Ni4 displayed moderate to high activity as catalysts for ethylene polymerization, with levels falling in the order Ni2 (cyclohexyl) > Ni1 (cyclopentyl) > Ni4 (cyclododecyl) > Ni3 (cyclooctyl). Notably, cyclohexyl-containing Ni2/MAO reached a peak level of 13.2 × 106 g(PE) of (mol of Ni)-1 h-1 at 40 °C, yielding high-molecular-weight (ca. 1 million g mol-1) and highly branched polyethylene elastomers with generally narrow dispersity. The analysis of polyethylenes with 13C NMR spectroscopy revealed branching density between 73 and 104 per 1000 carbon atoms, with the run temperature and the nature of the aluminum activator being influential; selectivity for short-chain methyl branches (81.8% (EtAlCl2); 81.1% (Et2AlCl); 82.9% (MAO)) was a notable feature. The mechanical properties of these polyethylene samples measured at either 30 °C or 60 °C were also evaluated and confirmed that crystallinity (Xc) and molecular weight (Mw) were the main factors affecting tensile strength and strain at break (εb = 353-861%). In addition, the stress-strain recovery tests indicated that these polyethylenes possessed good elastic recovery (47.4-71.2%), properties that align with thermoplastic elastomers (TPEs).
Collapse
Affiliation(s)
- Shu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuting Zheng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Irina V Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Zhixin Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ivan I Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | - Ming Liu
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Dashti A, Ahmadi M, Haddadi-Asl V, Ahmadjo S, Mortazavi SMM. Tandem coordinative chain transfer polymerization for long chain branched Polyethylene: The role of chain displacement. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Titova YY. Dynamic EPR Studies of the Formation of Catalytically Active Centres in Multicomponent Hydrogenation Systems. Catalysts 2023. [DOI: 10.3390/catal13040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The formation of catalytically active nano-sized cobalt-containing structures in multicomponent hydrogenation systems based on Co(acac)2 complex and various cocatalysts, namely, AlEt3, AlEt2(OEt), Li-n-Bu, and (PhCH2)MgCl, has been studied for the first time in detail using dynamic EPR spectroscopy. It is shown that after mixing the initial components, paramagnetic structures are formed, which include a fragment containing Co(0) with the electronic configuration 3d9, as well as a fragment bearing an aluminium, lithium, or magnesium atom, depending on the nature of the used cocatalyst. Such bimetallic paramagnetic sites are stabilized by acetylacetonate ligands. In addition, the paramagnetic complex contains the arene molecule(s), and the cobalt atom is bonded with the atom of the corresponding non-transition through the alkyl group of the co-catalyst, in particular through the carbon atom in the α-position with respect to the atom of the non-transition element. Due to the high reactivity of the described intermediates, they, under the conditions of hydrogenation catalysis, are transformed into nano-sized cobalt-containing structures that act as carriers of the catalytically active sites. Furthermore, because of the high reactivity and paramagnetism, such intermediates can be detected only by the EPR technique. The paper describes the whole experimental way of interpreting the EPR signals corresponding to the intermediates, precursors of catalytically active structures. In addition, a possible mathematical model based on the obtained experimental EPR data is presented.
Collapse
|
14
|
Wang YB, Nan C, Zhuo W, Zou C, Jiang H, Hao XQ, Chen C, Song MP. Amine-Imine Nickel Catalysts with Pendant O-Donor Groups for Ethylene (Co)Polymerization. Inorg Chem 2023; 62:5105-5113. [PMID: 36933227 DOI: 10.1021/acs.inorgchem.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The introduction of a secondary interaction is an efficient strategy to modulate transition-metal-catalyzed ethylene (co)polymerization. In this contribution, O-donor groups were suspended on amine-imine ligands to synthesize a series of nickel complexes. By adjusting the interaction between the nickel metal center and the O-donor group on the ligands, these nickel complexes exhibited high activities for ethylene polymerization (up to 3.48 × 106 gPE·molNi-1·h-1) with high molecular weight up to 5.59 × 105 g·mol-1 and produced good polyethylene elastomers (strain recovery (SR) = 69-81%). In addition, these nickel complexes can catalyze the copolymerization of ethylene with vinyl acetic acid, 6-chloro-1-hexene, 10-undecylenic, 10-undecenoic acid, and 10-undecylenic alcohol to prepare the functionalized polyolefins.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chenlong Nan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Weize Zhuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
15
|
Peng D, Xu M, Tan C, Chen C. Emulsion Polymerization Strategy for Heterogenization of Olefin Polymerization Catalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Dan Peng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Menghe Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Joy BP, Paul S, Sethy S, Gudimetla VB. Non‐Symmetrical Tetraaryl‐α‐Diimines
via
Transimination: A Promising Route for Non‐Symmetrical 1,3,4,5‐Tetraarylimidazolium Chlorides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Bony P. Joy
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Sudeep Paul
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Sandhyarani Sethy
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Vittal B. Gudimetla
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| |
Collapse
|
17
|
Ullah Khan W, Mazhar H, Shehzad F, Al-Harthi MA. Recent Advances in Transition Metal-Based Catalysts for Ethylene Copolymerization with Polar Comonomer. CHEM REC 2023; 23:e202200243. [PMID: 36715494 DOI: 10.1002/tcr.202200243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The synthesis of polar functionalized polyolefin (PFP) offers improvement in mixing properties, polymer surface, and rheological properties with the potential of upgraded polyolefins for modern and ingenious applications. The synthesis of PFP from metal-based catalyzed olefin (non-polar in nature) copolymerization with polar comonomers embodies energy-efficient, atom-efficient, and apparently an upfront methodology. Despite their outstanding success during conventional polymerization of olefin, 3rd and 4th group (early transition metal)-based catalysts, owing to their electrophilic nature, face challenges mainly due to Lewis basic sites of the polar monomers. On the contrary, late transition metal-based catalysts have also made progress, in recent years, for PFP synthesis. The recent past has also witnessed several advancements in the development of dominating palladium-based catalysts while their lower resistance towards ligand functional groups has limited the practical application of abundant and cheaper nickel-based catalysts. However, the relentless efforts of the scientific community, during the past half-decade, have indicated rigorous progress in the development of nickel-based catalysts for PFP synthesis. In this review, we have abridged the recent research trends in both early as well as late transition metal-based catalyst development. Furthermore, we have highlighted the role of transition metal-based catalysts in influencing the polymer properties.
Collapse
Affiliation(s)
- Wasim Ullah Khan
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farrukh Shehzad
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mamdouh A Al-Harthi
- Interdisciplinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
18
|
Zheng H, Pei L, Deng H, Gao H, Gao H. Electronic effects of amine-imine nickel and palladium catalysts on ethylene (co)polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Capacchione C, Grisi F, Lamberti M, Mazzeo M, Milani B, Milione S, Pappalardo D, Zuccaccia C, Pellecchia C. Metal Catalyzed Polymerization: From Stereoregular Poly(α‐olefins) to Tailor‐Made Biodegradable/Biorenewable Polymers and Copolymers. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmine Capacchione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Fabia Grisi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06132 Perugia Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
20
|
Wu R, Klingler Wu W, Stieglitz L, Gaan S, Rieger B, Heuberger M. Recent advances on α-diimine Ni and Pd complexes for catalyzed ethylene (Co)polymerization: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Turney KM, Kaewdeewong P, Eagan JM. Ethylene polymerization using heterogeneous multinuclear nickel catalysts supported by a crosslinked alpha diimine ligand network. Polym Chem 2023. [DOI: 10.1039/d3py00118k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
A crosslinked alpha diimine ligand supporting a nickel metal center polymerizes ethylene to produce polyethylene with controlled microstructures, high activities, and can be removed from the product.
Collapse
Affiliation(s)
- Keaton M. Turney
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio, 44325-3909 USA
| | - Parin Kaewdeewong
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio, 44325-3909 USA
| | - James M. Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio, 44325-3909 USA
| |
Collapse
|
22
|
Wu R, Stieglitz L, Lehner S, Jovic M, Rentsch D, Neels A, Gaan S, Rieger B, Heuberger M. Fluorine and Hydroxyl Containing Unsymmetrical a-Diimine Ni (II) Dichlorides with Improved Catalytic Performance for Ethylene Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Qasim M, Tian W, Pang W, Pan Y, Behzadi S, Chen M. Effect of Coumarin backbone in N^O type Nickel Catalyzed Olefin Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Kim K, Nayab S, Cho Y, Jung H, Yeo H, Lee H, Lee SH. Catalytic performance of tridentate versus bidentate Co(ii) complexes supported by Schiff base ligands in vinyl addition polymerization of norbornene. RSC Adv 2022; 12:35896-35904. [PMID: 36605356 PMCID: PMC9769537 DOI: 10.1039/d2ra07241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
A series of Co(ii) complexes supported by Schiff base ligands, LA-LC, where LA, LB, and LC are (E)-3-methoxy-N-(quinolin-2-ylmethylene)propan-1-amine, (E)-N 1,N 1-dimethyl-N 2-(pyridin-2-ylmethylene)ethane-1,2-diamine, and (E)-N 1,N 1-dimethyl-N 2-(thiophen-2-ylmethylene)ethane-1,2-diamine, respectively, were designed and synthesized. Structural studies revealed a distorted trigonal bipyramidal geometry for [LBCoCl2] and a distorted tetrahedral geometry for [LCCoCl2]. After activation with modified methyl aluminoxane (MMAO), all the Co(ii) complexes catalyzed the polymerization of norbornene (NB) to yield vinyl-type polynorbornenes (PNBs) with activities of up to 4.69 × 104 gPNB mol Co-1 h-1 at 25 °C. High-molecular-weight (M n of up to 1.71 × 105 g mol-1) soluble PNBs with moderate molecular-weight distributions (MWD) were obtained. The activity of the Co(ii)/MMAO catalytic system is influenced by the steric hindrance and electronic properties of the ligands.
Collapse
Affiliation(s)
- Kyeonghun Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Saira Nayab
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea,Department of Chemistry, Shaheed Benazir Bhutto UniversitySheringal Dir (Upper) 18000Khyber PakhtunkhwaIslamic Republic of Pakistan
| | - Yerim Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Hyewon Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical TechnologyUlsan 44412Republic of Korea
| | - Hyeonuk Yeo
- Department of Chemistry Education and Department of Pharmacy, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Sang-Ho Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical TechnologyUlsan 44412Republic of Korea
| |
Collapse
|
25
|
LaPointe AM, Pérez PJ. Maurice Brookhart: A Legacy to Organometallic Chemistry. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne M. LaPointe
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14583, United States
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC. CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, 21007 Huelva, Spain
| |
Collapse
|
26
|
Controllable Preparation of Branched Polyolefins with Various Microstructural Units via Chain-walking Ethylene and Pentene Polymerizations. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Zhang Y, Zhang Y, Hu X, Wang C, Jian Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Developments in late transition metal catalysts with high thermal stability for ethylene polymerization: A crucial aspect from laboratory to industrialization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Farquhar AH, Gardner KE, Acosta-Calle S, Camp AM, Chen CH, Miller AJM. Cation-Controlled Olefin Isomerization Catalysis with Palladium Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra H. Farquhar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kristen E. Gardner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sebastian Acosta-Calle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrew M. Camp
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
30
|
Transition Metal-(μ-Cl)-Aluminum Bonding in α-Olefin and Diene Chemistry. Molecules 2022; 27:molecules27217164. [PMID: 36363991 PMCID: PMC9654437 DOI: 10.3390/molecules27217164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M−(μ-Cl)−Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M−(μ-Cl)−Al bonding in Ziegler−Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M−(μ-Cl)−Al species into catalytic cycles. In the present review, we have compiled data on the formation of M−(μ-Cl)−Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler−Natta processes and beyond.
Collapse
|
31
|
Hong C, Wang Z, Jiang H, Si G, Song M, Chen C. Dual roles of trifluoroborate in nickel-catalyzed ethylene polymerization: Electronic perturbation and anchoring for heterogenization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Wang Q, Wang W, Qu W, Pang W, Qasim M, Zou C. Ethylene homo and copolymerization by phosphorus‐benzoquinone based homogeneous and heterogeneous nickel catalysts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Quan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenbing Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Weicheng Qu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Muhammad Qasim
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| |
Collapse
|
33
|
Eagan JM, Padilla-Vélez O, O’Connor KS, MacMillan SN, LaPointe AM, Coates GW. Chain-Straightening Polymerization of Olefins to Form Polar Functionalized Semicrystalline Polyethylene. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James M. Eagan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Omar Padilla-Vélez
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Kyle S. O’Connor
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
34
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
35
|
Slurry Homopolymerization of Ethylene Using Thermostable α-Diimine Nickel Catalysts Covalently Linked to Silica Supports via Substituents on Acenaphthequinone-Backbone. Polymers (Basel) 2022; 14:polym14173684. [PMID: 36080759 PMCID: PMC9459716 DOI: 10.3390/polym14173684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Four supported α-diimine nickel(II) catalysts covalently linked to silica via hydroxyl functionality on α-diimine acenaphthequinone-backbone were prepared and used in slurry polymerizations of ethylene to produce branched polyethylenes. The catalytic activities of these still reached 106 g/molNi·h at 70 °C. The life of the supported catalyst is prolonged, as can be seen from the kinetic profile. The molecular weight of the polyethylene obtained by the 955 silica gel supported catalyst was higher than that obtained by the 2408D silica gel supported catalyst. The melting points of polyethylene obtained by the supported catalysts S-C1-a/b are all above 110 °C. Compared with the homogeneous catalyst, the branching numbers of the polyethylenes obtained by the supported catalysts S-C1-a/b is significantly lower. The polyethylenes obtained by supported catalyst S-C1-a/b at 30-50 °C are free-flowing particles, which is obviously better than the rubber-like cluster polymer obtained from homogeneous catalyst.
Collapse
|
36
|
Jeong AR, Nayab S, Kim E, Yeo H, Lee H. Norbornene and methyl methacrylate polymerizations catalyzed by palladium(II) complexes bearing aminomethylpyridine and aminomethylquinoline derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Synthesis of Ultra-High molecular weight polyethylene elastomers by para-tert-Butyl dibenzhydryl functionalized α-Diimine nickel catalysts at elevated temperature. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Sun Y, Wang Q, Pan Y, Pang W, Zou C, Chen M.
SiO
2
‐supported Ni(
II
) and Fe(
II
) Catalysts bearing Sodium ‐Sulfonate Group for Olefin Polymerization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yao Sun
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Quan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Yao Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Min Chen
- Institutes of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| |
Collapse
|
39
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
40
|
Zheng Y, Jiang S, Liu M, Yu Z, Ma Y, Solan GA, Zhang W, Liang T, Sun WH. High molecular weight PE elastomers through 4,4-difluorobenzhydryl substitution in symmetrical α-diimino-nickel ethylene polymerization catalysts. RSC Adv 2022; 12:24037-24049. [PMID: 36200024 PMCID: PMC9435601 DOI: 10.1039/d2ra04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The following family of N,N-diaryl-2,3-dimethyl-1,4-diazabutadienes, ArN[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]NAr (Ar = 2,6-Me2-4-{CH(4-FC6H4)2}C6H2L1, 2-Me-6-Et-4-{CH(4-FC6H4)2}C6H2L2, 2,4-{CH(4-FC6H4)2}2-6-MeC6H2L3, 2,4-{CH(4-FC6H4)2}2-6-EtC6H2L4, 2,4-{CH(4-FC6H4)2}2-6-iPrC6H2L5), each incorporating para-substituted 4,4-difluorobenzhydryl groups but differing in the ortho-pairing, have been synthesized and used as precursors to their respective nickel(ii) bromide complexes, Ni1-Ni5. Compound characterization has been achieved through a combination of FT-IR, multinuclear NMR spectroscopy (1H, 13C, 19F) and elemental analysis. In addition, L1, Ni1 and Ni5 have been structurally characterized with Ni1 and Ni5 revealing similarly distorted tetrahedral geometries about nickel but with distinct differences in the steric protection offered by the ortho-substituents. All nickel complexes, under suitable activation, showed high activity for ethylene polymerization with a predilection towards forming branched high molecular weight polyethylene with narrow dispersity. Notably the most sterically bulky Ni5, under activation with either EtAlCl2, Et2AlCl or EASC, was exceptionally active (0.9-1.0 × 107 g of PE per (mol of Ni) per h) at an operating temperature of 40 °C. Furthermore, the polyethylene generated displayed molecular weights close to one million g mol-1 (M w range: 829-922 kg mol-1) with high branching densities (86-102/1000 carbons) and a selectivity for short chain branches (% Me = 94.3% (EtAlCl2), 87.2% (Et2AlCl), 87.7% (EASC)). Further analysis of the mechanical properties of the polymers produced at 40 °C and 50 °C using Ni5 highlighted the key role played by crystallinity (X c) and molecular weight (M w) on tensile strength (σ b) and elongation at break (ε b). In addition, stress-strain recovery tests reveal these high molecular weight polymers to exhibit characteristics of thermoplastic elastomers (TPEs).
Collapse
Affiliation(s)
- Yuting Zheng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Ming Liu
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhixin Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Wenjuan Zhang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
41
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
42
|
Lieu T, Daugulis O. Copper Iodide-Mediated Synthesis of α-Diimine Ligands from Bis(imidoyl chlorides) and Arylstannanes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thien Lieu
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
43
|
Li Y, Pelzer K, Sechet D, Creste G, Matt D, Braunstein P, Armspach D. A cavity-shaped cis-chelating P,N ligand for highly selective nickel-catalysed ethylene dimerisation. Dalton Trans 2022; 51:11226-11230. [PMID: 35861279 DOI: 10.1039/d2dt01553f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of a permethylated α-cyclodextrin (α-CD) cavity in a chelating P,N ligand promotes exclusive formation of 1 : 1 ligand/metal complexes. In MX2 complexes, one of the two halido ligands is forced to reside inside the CD hollow while the second one is pointing outside. Unlike its cavity-free analogue, a Ni(II) complex of the CD ligand is a highly selective precatalyst for ethylene dimerisation (96% C4 selectivity with up to 95% of 1-butene within the C4 fraction).
Collapse
Affiliation(s)
- Yang Li
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Katrin Pelzer
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Damien Sechet
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | - Geordie Creste
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | - Pierre Braunstein
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Dominique Armspach
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| |
Collapse
|
44
|
Hosseini ES, Jandaghian MH, Maddah Y. Statistical analysis of parameters involved in the synthesis of polar copolymers using a nickel (II) α-diimine complex. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2099287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Elahe Sadat Hosseini
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Jandaghian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
- Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Bushehr, Iran
| | - Yasaman Maddah
- Department of Chemical Engineering, University of Waterloo, Ontario, Canada
| |
Collapse
|
45
|
Lei T, Ma Z, Liu H, Wang X, Li P, Wang F, Wu W, Zhang S, Xu G, Wang F. Preparation of highly branched polyolefins by controlled chain‐walking olefin polymerization. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Lei
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Zhanshan Ma
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Hongju Liu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Xiaoyue Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Pei Li
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Feifei Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid surfaces Xiamen University Xiamen China
| | - Shaojie Zhang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Fuzhou Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| |
Collapse
|
46
|
Guo L, Chen W, Wang W, An W, Gao S, Zhao Y, Luo M, He G, Liu T. Ortho-substituent Effect on Metal Coordination Geometry, Chain Microstructure and Polymer Properties in α-Diimine Nickel-catalyzed Long Chain α-Olefin Polymerization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Effect of alkylaluminum structure and aggregation state on the micro-kinetics of ethylene polymerization catalyzed by α-diimine nickel complex. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Karimi M, Arabi H, Sadjadi S. New advances in olefin homo and copolymerization using neutral, single component palladium/nickel complexes ligated by a phosphine-sulfonate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Chen M, Chen C. Nickel catalysts for the preparation of functionalized polyolefin materials. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Yan M, Kang X, Li S, Xu X, Luo Y, He S, Chen C. Mechanistic Studies on Nickel-Catalyzed Ethylene Polymerization: Ligand Effects and Quantitative Structure–Activity Relationship Model. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meixue Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Shuang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowei Xu
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Shengbao He
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Changle Chen
- Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|